首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mouse sperm genome is resistant to in vitro heat treatment, and embryos derived from heated sperm can support full-term embryonic development, but the blastocyst rate and implantation rate are lower compared to embryos derived from fresh sperm. In the present study, the patterns of DNA methylation, histone H4K12 (ACH4K12) acetylation, H3K9 trimethylation (H3K9-TriM), and H3K27 trimethylation (H3K27-TriM) in preimplantation embryos derived from 65 °C-heated sperm were investigated. Although no evident changes in global DNA methylation, histone H4K12 (ACH4K12) acetylation, and H3K9 trimethylation (H3K9-TriM) were found, significantly lower levels of H3K27-TriM, which was thought to be one of the reasons for low efficiency of mouse cloning, were found in the inner cell mass of heated-sperm derived blastocysts. Thus, defective modification of H3K27-TriM might contribute to compromised development of embryos derived from heated sperm.  相似文献   

2.
The number of cells in a preimplantation embryo is directly correlated to the health and viability of the embryo. There are currently no methods to count the number of cells in late-stage preimplantation embryos noninvasively. We assessed the ability of optical quadrature microscopy (OQM) to count the number of cells in mouse preimplantation embryos noninvasively. First, to test for possible light toxicity, we exposed two-cell mouse embryos to OQM and differential interference contrast (DIC) microscopy and assessed their ability to develop to the blastocyst stage. We found no inhibition of development from either mode of microscopy for up to 2 h of light exposure. We also imaged eight-cell to morula stage mouse preimplantation embryos by OQM nd developed two methods for counting the number of cells. The contour signature method (CSM) used OQM images alone and the phase subtraction method (PSM) used both OQM and DIC images. We compared both methods to standard cell counting techniques and found that the PSM was superior to all other noninvasive cell counting methods. Our work on mouse embryos should be applicable to human embryos. The ability to correctly count the number of cells in human preimplantation embryos could lead to the transfer of fewer embryos in in vitro fertilization (IVF) clinics and consequently a lower rate of high-risk multiple-infant births.  相似文献   

3.
The most used method for muscle lipid fractionation into major lipid classes was modified for improving its separation efficiency. Extracted lipids from a masseter muscle of one Iberian pig were separated into neutral lipids (NL), free fatty acids (FFA) and polar lipids (PL) using aminopropyl minicolumns, following the extensively used method of Kaluzny et al. [1] (old method-OM-) and a method based on that, developed by Pinkart et al. [2] with some (modifications modified method–MM). Obtained lipid classes were further analysed by TLC and lipid fractions were identified. TLC evidenced the presence of a certain amount of PL in the NL fraction obtained with the OM. On the other hand, using the MM only an almost undetectable presence of PL was evidenced in the NL fraction. Fatty acid composition of NL, PL and FFA obtained with each method was studied by gas chromatography. Fatty acid profile of NL was strongly influenced by the separation method used. Thus, NL obtained using the OM showed higher amounts of saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) and lower of monounsaturated fatty acids (MUFA) than those obtained using the MM. Moreover, NL obtained using the OM showed the presence of fatty alcohols, constituents of phospholipids (PhL) absent or present only in trace amounts in acylglycerols. This profile reflects the coelution of PL in the NL fraction. Fatty acid profile of FFA and PL fractions was also influenced by the solid phase extraction (SPE) method used, but to a lesser extent.  相似文献   

4.
The development of sensitive measurements to analyze individual cells is of relevance to elucidate specialized roles or metabolic functions of each cell under physiological and pathological conditions. Lipids play multiple and critical roles in cellular functions and the application of analytical methods in the lipidomics area is of increasing interest. In this work, in vitro maturation of porcine oocytes was studied. Two independent sources of chemical information (represented by mass spectra in the positive and negative ion modes) from single oocytes (immature oocytes, 24-h and 44-h in vitro matured oocytes) were acquired by using desorption electrospray ionization-mass spectrometry (DESI-MS). Low and mid-level data fusion strategies are presented with the aim of better exploring the large amount of chemical information contained in the two mass spectrometric lipid profiles. Data were explored by principal component analysis (PCA) within the two multi-block approaches to include information on free fatty acids, phospholipids, cholesterol-related molecules, di- and triacylglycerols. After data fusion, clearer differences among immature and in vitro matured porcine oocytes were observed, which provide novel information regarding lipid metabolism throughout oocyte maturation. In particular, changes in TAG composition, as well as increase in fatty acid metabolism and membrane complexity were evidenced during the in vitro maturation process. This information can assist the improvement of in vitro embryo production for porcine species.  相似文献   

5.
There has been a recent surge in applications of mass spectrometry (MS) to tissue analysis, particularly lipid-based tissue imaging using ambient ionization techniques. This recent growth highlights the need to examine the effects of sample handling, storage conditions, and experimental protocols on the quality of the data obtained. Variables such as time before freezing after organ removal, storage time at −80 °C, time stored at room temperature, heating, and freeze/thaw cycles were investigated for their effect on the data quality obtained in desorption electrospray ionization (DESI)-MS using mouse brain. In addition, analytical variables such as tissue thickness, drying times, and instrumental conditions were also examined for their impact on DESI-MS data. While no immediate changes were noted in the DESI-MS lipid profiles of the mouse brain tissue after spending 1 h at room temperature when compared to being frozen immediately following removal, minor changes were noted between the tissue samples after 7 months of storage at −80 °C. In tissue sections stored at room temperature, degradation was noted in 24 h by the appearance of fatty acid dimers, which are indicative of high fatty acid concentrations, while in contrast, those sections stored at −80 °C for 7 months showed no significant degradation. Tissue sections were also subjected to up to six freeze/thaw cycles and showed increasing degradation following each cycle. In addition, tissue pieces were subjected to 50 °C temperatures and analyzed at specific time points. In as little as 2 h, degradation was observed in the form of increased fatty acid dimer formation, indicating that enzymatic processes forming free fatty acids were still active in the tissue. We have associated these dimers with high concentrations of free fatty acids present in the tissue during DESI-MS experiments. Analytical variables such as tissue thickness and time left to dry under nitrogen were also investigated, with no change in the resulting profiles at thickness from 10 to 25 μm and with optimal signal obtained after just 20 min in the dessicator. Experimental conditions such as source parameters, spray solvents, and sample surfaces are all shown to impact the quality of the data. Inter-section (relative standard deviation (%RSD), 0.44–7.2%) and intra-sample (%RSD, 4.0–8.0%) reproducibility data show the high quality information DESI-MS provides. Overall, the many variables investigated here showed DESI-MS to be a robust technique, with sample storage conditions having the most effect on the data obtained, and with unacceptable sample degradation occurring during room temperature storage.  相似文献   

6.
Russo MV 《Annali di chimica》2002,92(4):469-476
Lipids were extracted from lemon wax and fractionated into four classes on a silicic acid glass packed column by thin-layer chromatography (TLC). The free fatty acids, the fatty acid composition and the amount of each separated lipids were determined by capillary column gas chromatography (GC). Total lipids (TL) were 60 mg per 100 g raw weight and the ratio of nonpolar lipids (NPLs): glycolipids (GLs): phospholipids (PLs) was about 47:2:2. The main free fatty acids in lemon wax were hexadecanoic acid, cis-9-octadecenoic acid and cis,cis-9,12-octadecadienoic acid, while in the lipid fractions the main fatty acids were hexadecanoic acid in all the fractions, cis-cis-9,12-octadecadienoic and decanoic acids in triglyceride (TG) fraction, dodecanoic and cis-9-octadecenoic acids in diglyceride (DG) fraction and tetradecanoic, octadecanoic and cis-9-octadecenoic acids in GL and PL fractions. The ratio of unsaturated to saturated fatty acids showed a remarkable difference among these four lipid fractions. In PL and GL fractions this ratio was similar, 47.7% and 47.1% respectively, and in TG fraction it was 42.4% while in DG fraction this value was 23.5%.  相似文献   

7.
Lipid biomarker profiles are a powerful tool for assessing soil microbial community structure, but intensive laboratory work and data analysis are needed to construct profiles from phospholipid fatty acids and other common biomarkers. Pyrolysis mass spectrometry (Py-MS) is a alternative method that provides a rapid and sensitive ‘fingerprint’ of soil lipids and may be sufficient to characterize lipids from various sites. The objective of this work was to evaluate the capacity of pyrolysis metastable atom bombardment time-of-flight mass spectrometry (Py-MAB-TOF-MS) to provide replicable analysis of soil lipids, compared to a routine gas chromatography-flame ionization detection (GC-FID) method. Soils were collected from six agricultural fields under soybean, corn and asparagus production. Soil lipids extracted with 1:2 chloroform:methanol solvent were analyzed with Py-MAB-TOF-MS or transesterified into fatty acids and then analyzed by GC-FID. The two methods were complementary, but distinct: lipid fingerprints, generated from Py-MAB-TOF-MS spectra, included extractable soil lipids from microbial, animal and plant origins plus non-living organic matter in the samples, whereas fatty acid profiles generally represented lipids from soil bacteria and fungi. We conclude that the soil lipid fingerprints generated from Py-MAB-TOF-MS present more variability than lipid biomarker profiles from the GC-FID method because they include a broader group of extractable soil lipids. Further work is needed to identify the molecular fragment masses in Py-MAB-TOF-MS spectra that could precisely identify soil lipids of microbial origin.  相似文献   

8.
Imaging mass spectrometry allows for the direct investigation of tissue samples to identify specific biological compounds and determine their spatial distributions. Desorption electrospray ionization (DESI) mass spectrometry has been used for the imaging and analysis of rat spinal cord cross sections. Glycerophospholipids and sphingolipids, as well as fatty acids, were detected in both the negative and positive ion modes and identified through tandem mass spectrometry (MS/MS) product ion scans using collision-induced dissociation and accurate mass measurements. Differences in the relative abundances of lipids and free fatty acids were present between white and gray matter areas in both the negative and positive ion modes. DESI-MS images of the corresponding ions allow the determination of their spatial distributions within a cross section of the rat spinal cord, by scanning the DESI probe across the entire sample surface. Glycerophospholipids and sphingolipids were mostly detected in the white matter, while the free fatty acids were present in the gray matter. These results show parallels with reported distributions of lipids in studies of rat brain. This suggests that the spatial intensity distribution reflects relative concentration differences of the lipid and fatty acid compounds in the spinal cord tissue. The “butterfly” shape of the gray matter in the spinal cord cross section was resolved in the corresponding ion images, indicating that a lateral resolution of better than 200 μm was achieved. The selected ion images of lipids are directly correlated with anatomic features on the spinal cord corresponding to the white and the gray matter.  相似文献   

9.
A prototype respirometric biochip dedicated to monitoring oxygen consumption of preimplantation embryos has been developed. The biochip comprises a linear array of eight flow-through microchambers profiled on silicon substrate, and functions together with a phosphorescent oxygen sensitive probe and fluorescence plate reader detection. A high level of sensitivity to changes in dissolved oxygen was achieved through miniaturisation and optimization of biochip geometry, and incorporation of appropriate sealing and humidification systems. The biochips have allowed characterisation of oxygen consumption, by 2 cell and blastocyst stage preimplantation mouse embryos, through monitoring as few as ten preimplantation embryos over a one-hour time period. They provide a non-invasive, simple and convenient means for assessing preimplantation embryo metabolism.  相似文献   

10.
The valorization of food industry by-products as sources of bioactive compounds is at the forefront of research in functional foods and nutraceuticals. This study focuses on bioactives of apple cider by-products (ACBPs) with putative cardio-protective properties. Total lipids (TLs) were extracted from ACBPs of apple varieties that are low (ACBP1), medium (ACBP2), and high (ACBP3) in tannins and were further separated into polar lipids (PLs) and neutral lipids (NLs). The functionality of these lipid extracts and of their HPLC-derived lipid fractions/PL subclasses were assessed in vitro against human platelet aggregation induced by the thrombotic and inflammatory platelet agonists platelet-activating factor (PAF) and adenosine diphosphate (ADP). The fatty acid profile of PLs and their most bioactive lipid fractions were evaluated by GC–MS analysis. The PL extracts exhibited higher specificity against the PAF-induced platelet aggregation compared to their anti-ADP effects, while TL and NL showed lower bioactivities in all ACBPs. HPLC analysis unveiled that the most bioactive PL from all ACBPs were those in PL fraction 3 containing phosphatidylcholines (PCs). PLs from all ACBPs and their PC bioactives were rich in polyunsaturated fatty acids (PUFAs) and especially in the essential omega-6 (n-6) linoleic acid (LA) and omega-3 (n-3) alpha linolenic acid (ALA), with favorably low values of the n-6/n-3 PUFA ratio, thus providing a rationale for their higher anti-inflammatory bioactivities. Within this study, highly bioactive PL compounds with strong anti-inflammatory and anti-platelet properties were identified in ACBPs, which can be potentially utilized for producing cardio-protective functional foods and/or nutraceuticals.  相似文献   

11.
Efforts to improve the in vitro embryo production process in pigs have included modifying culture medium and number of spermatozoa inseminated in order to reduce the incidence of polyspermy. Polyspermy is a pathological condition which results in aberrant embryonic development. The microchannels are designed to more closely mimic the function of the oviduct and create a flow pattern of spermatozoa past the oocytes similar to the pattern in the oviduct. In vitro fertilization of porcine oocytes in the microchannels has produced a higher incidence of monospermic penetration (p<0.05) as compared to the oocytes fertilized in the traditional microdrop system with comparable penetration and male pronucleus formation rates. Additionally, cleavage rates of the embryos as well as development to the blastocyst stage are similar. Here we demonstrate that the biomimetic microchannel in vitro fertilization system can reduce polyspermy and, therefore, increase the number of potentially viable embryos without reducing the overall in vitro production efficiency.  相似文献   

12.
Lipids are important structural components of cell membranes and have profound effect on membrane fluidity. Lipid profiling and lipidomics have captured increased attention due to the well-recognized roles of lipids in numerous human diseases. Investigating lipid profiles not only provides insights into the specific roles of lipid molecular species in health and diseases, but can also help in identifying potential preventive or therapeutic biomarkers. Cataract, the loss of transparency of eye lens, is a disease of protein aggregation. There are several factors contributing to the stability in protein conformation. Age-related changes in lipid composition could be a contributing factor for altered protein–lipid interaction leading to protein aggregation and cataract. Keeping this in view, in the present study, fatty acid profiling from different age groups of lenses was carried out, using a freshwater catfish as the model. Total lipids were extracted from lenses of three different age groups of fishes (young, adult, and aged) and fatty acid methyl esters (FAME) were prepared and FAME analysis was carried out using gas chromatography–mass spectrometry. The results showed that three fatty acids viz. heneicosylic acid (C21), docosahexaenoic acid (C22:6), nervonic acid (C24:1) which were not present in the adult lens, appeared in the aged lens. On the other hand, eicosenoic acid (C20:1) present in the adult lens was found to be absent in the aged lens. The appearance or disappearance of these fatty acids can possibly serve as biomarkers of aging lens which is the most vulnerable stage for cataract development.  相似文献   

13.
14.
BACKGROUND: Hormones, lipids, vitamins and other biologically active small molecules can be removed from animal tissues by extraction with organic solvents. These compounds can have dramatic effects on cultured cells and the characterization of such compounds can lead to the discovery of new functions for known molecules, or even to the discovery of previously unknown compounds. RESULTS: Organic-soluble compounds in 17.5-day-old mouse embryos were removed with tert-butylmethylether and found to induce apoptosis in T-antigen-transformed Jurkat T cells. These embryonic extracts were fractionated and their apoptosis-inducing components were identified as a mixture of polyunsaturated fatty acids, including arachidonic, docosatetraenoic and docosahexaenoic acids. Docosatetraenoic acid was the most potent apoptosis inducer with an effective dose (ED(50)) of 30 microM. CONCLUSIONS: A family of polyunsaturated fatty acids is shown to be abundant in utero during pregnancy. Members of this family are able to induce cleavage of poly(ADP)ribose polymerase, and ultimately to induce apoptosis, in T-antigen-transformed Jurkat T cells. Free radical scavengers, including phenol and benzyl alcohol, block the apoptosis-inducing properties of these polyunsaturated fatty acids; this is consistent with a lipid peroxidation mechanism involving formation of hydroperoxy fatty acids.  相似文献   

15.
Desorption electrospray ionization (DESI) mass spectrometry (MS) was used in an imaging mode to interrogate the lipid profiles of thin tissue sections of 11 sample pairs of human papillary renal cell carcinoma (RCC) and adjacent normal tissue and nine sample pairs of clear cell RCC and adjacent normal tissue. DESI-MS images showing the spatial distributions of particular glycerophospholipids (GPs) and free fatty acids in the negative ion mode were compared to serial tissue sections stained with hematoxylin and eosin (H&E). Increased absolute intensities as well as changes in relative abundance were seen for particular compounds in the tumor regions of the samples. Multivariate statistical analysis using orthogonal projection to latent structures treated partial least square discriminate analysis (PLS-DA) was used for visualization and classification of the tissue pairs using the full mass spectra as predictors. PLS-DA successfully distinguished tumor from normal tissue for both papillary and clear cell RCC with misclassification rates obtained from the validation set of 14.3% and 7.8%, respectively. It was also used to distinguish papillary and clear cell RCC from each other and from the combined normal tissues with a reasonable misclassification rate of 23%, as determined from the validation set. Overall DESI-MS imaging combined with multivariate statistical analysis shows promise as a molecular pathology technique for diagnosing cancerous and normal tissue on the basis of GP profiles.  相似文献   

16.
Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the ma ternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells).  相似文献   

17.
Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.  相似文献   

18.
A new approach to the visualization of fatty acids in mouse liver and retinal samples has been developed using silver nanoparticles (AgNPs) in nanoparticle-assisted laser desorption/ ionization imaging mass spectrometry (nano-PALDI-IMS) in negative ion mode. So far, IMS analysis has concentrated on main cell components, such as cell membrane phospholipids and cytoskeletal peptides. AgNPs modified with alkylcarboxylate and alkylamine were used for nano-PALDI-IMS to identify fatty acids, such as stearic, oleic, linoleic, arachidonic, and eicosapentaenoic acids, as well as palmitic acid, in mouse liver sections; these fatty acids are not detected using 2,5-dihydroxybenzoic acid (DHB) as a matrix. The limit of detection for the determination of palmitic acid was 50 pmol using nano-PALDI-IMS. The nano-PALDI-IMS method is successfully applied to the reconstruction of the ion images of fatty acids in mouse liver sections. We verified the detection of fatty acids in liver tissue sections of mice by analyzing standard lipid samples, which showed that fatty acids were from free fatty acids and dissociated fatty acids from lipids when irradiated with a laser. Additionally, we applied the proposed method to the identification of fatty acids in mouse retinal tissue sections, which enabled us to learn the six-zonal distribution of fatty acids in different layers of the retina. We believe that the current approach using AgNPs in nano-PALDI-IMS could lead to a new strategy to analyze basic biological mechanisms and several diseases through the distribution of fatty acids.  相似文献   

19.
Microfluidic devices (microchannels) have been fabricated and tested for embryo culture. Three different microfabrication materials (silicon, polydimethylsiloxane (PDMS), and borosilicate) were used to fabricate the microchannels. The objective of this study was to determine if static microchannels permitted culture of mouse embryos to the blastocyst stage. Groups of 10 two-cell ICR x B6SJL/F1 mouse embryos were cultured for 96 hours in 4 different physical culture systems: 1) silicon/borosilicate microchannels, 2) PDMS/borosilicate microchannels, and 3) standard microdrops. Embryos cultured in the silicon/borosilicate and PDMS/borosilicate microchannels exhibited a faster rate of cleavage (P < 0.05), and produced more blastocysts (P < 0.01) than control microdrops. Furthermore, microchannels had a lower percentage of degenerated embryos than control embryos (P < 0.01). The results suggest that the microchannel culture systems may provide a culture environment that more closely mimics the in vivo environment.  相似文献   

20.
Reduction of total lipids (TL) content and significant variations of triglyceride (TG) and phospholipid (PL) fractions were observed as a consequence of exposure of Ciona intestinalis ovaries to tributyltin chloride (TBTCL) solutions. In particular, an evident TG decrease and a PL increase were observed, which probably provoked an increment in membrane fluidity, because of the high concentration of long chain fatty acids and, as a consequence, PL. This could be a cell adaptive standing mechanism towards the pollutants, as observed in Saccharomyces cerevisiae. Also the increase in the content of the polyunsaturated fatty acids (PUFA), important in the synthesis of compounds such as prostaglandine which are present in the ovary in a stress situation, was probably a consequence of a defense mechanism to the stress provoked by the presence of TBTCI. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号