首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we propose a novel micro-/nanofluidic device that can generate a chemical concentration gradient using a parallel nanochannel as gradient generator. This device is easy to fabricate, showing high reproducibility. Its main feature is the multiple-nanochannel-based gradient generator, which permits the diffusion of small molecules and tunably generates concentration gradients. The nanopattern for the nanochannels can be rapidly and easily fabricated by wrinkling a diamond-like carbon thin film which is deposited on a polydimethylsiloxane substrate; the generation of the concentration gradient can be adjusted by controlling the dimensions of the nanochannels. The developed gradient generator is embedded into a microfluidic device to study chemotaxis in the nematode Caenorhabditis elegans, which has a highly developed chemosensory system and can detect a wide variety of chemical molecules. This device shows good performance for rapid analysis of C. elegans chemotaxis under sodium chloride stimuli.
Figure
A parallel‐nanochannel‐based microfluidic device which can passively manipulate chemical concentration gradient by controlling the nanochannel geometry is employed for the analysis of Caenorhabditis elegans chemotaxis.  相似文献   

2.
There is increasing interest in using microalgae as a lipid feedstock for the production of biofuels. Lipids used for these purposes are triacylglycerols that can be converted to fatty acid methyl esters (biodiesel) or decarboxylated to “green diesel.” Lipid accumulation in most microalgal species is dependent on environmental stress and culturing conditions, and these conditions are currently optimized using slow, labor-intensive screening processes. Increasing the screening throughput would help reduce the development cost and time to commercial production. Here, we demonstrated an initial step towards this goal in the development of a glass/poly(dimethylsiloxane) (PDMS) microfluidic device capable of screening microalgal culturing and stress conditions. The device contained power-free valves to isolate microalgae in a microfluidic growth chamber for culturing and stress experiments. Initial experiments involved determining the biocompatibility and culturing capability of the device using the microalga Tetraselmis chuii. With this device, T. chuii could be successfully cultured for up to 3 weeks on-chip. Following these experiments, the device was used to investigate lipid accumulation in the microalga Neochloris oleabundans. It was shown that this microalga could be stressed to accumulate cytosolic lipids in a microfluidic environment, as evidenced with fluorescence lipid staining. This work represents the first example of microalgal culturing in a microfluidic device and signifies an important expansion of microfluidics into the biofuels research arena.  相似文献   

3.
The composition of the ship's ballast water is complex and contains a large number of microalgae cells, bacteria, microplastics, and other microparticles. To increase the accuracy and efficiency of detection of the microalgae cells in ballast water, a new microfluidic chip for continuous separation of microalgae cells based on alternating current dielectrophoresis was proposed. In this microfluidic chip, one piece of 3‐dimensional electrode is embedded on one side and eight discrete electrodes are arranged on the other side of the microchannel. An insulated triangular structure between electrodes is designed for increasing the inhomogeneity of the electric field distribution and enhancing the dielectrophoresis (DEP) force. A sheath flow is designed to focus the microparticles near the electrode, so as to increase the suffered DEP force and improve separation efficiency. To demonstrate the performance of the microfluidic separation chip, we developed two species of microalgae cells (Platymonas and Closterium) and a kind of microplastics to be used as test samples. Analyses of the related parameters and separation experiments by our designed microfluidic chip were then conducted. The results show that the presented method can separate the microalgae cells from the mixture efficiently, and this is the first time to separate two or more species of microalgae cells in a microfluidic chip by using negative and positive DEP force simultaneously, and moreover it has some advantages including simple operation, high efficiency, low cost, and small size and has great potential in on‐site pretreatment of ballast water.  相似文献   

4.
T Nisisako  T Ando  T Hatsuzawa 《Lab on a chip》2012,12(18):3426-3435
This study describes a microfluidic platform with coaxial annular world-to-chip interfaces for high-throughput production of single and compound emulsion droplets, having controlled sizes and internal compositions. The production module consists of two distinct elements: a planar square chip on which many copies of a microfluidic droplet generator (MFDG) are arranged circularly, and a cubic supporting module with coaxial annular channels for supplying fluids evenly to the inlets of the mounted chip, assembled from blocks with cylinders and holes. Three-dimensional flow was simulated to evaluate the distribution of flow velocity in the coaxial multiple annular channels. By coupling a 1.5 cm × 1.5 cm microfluidic chip with parallelized 144 MFDGs and a supporting module with two annular channels, for example, we could produce simple oil-in-water (O/W) emulsion droplets having a mean diameter of 90.7 μm and a coefficient of variation (CV) of 2.2% at a throughput of 180.0 mL h(-1). Furthermore, we successfully demonstrated high-throughput production of Janus droplets, double emulsions and triple emulsions, by coupling 1.5 cm × 1.5 cm - 4.5 cm × 4.5 cm microfluidic chips with parallelized 32-128 MFDGs of various geometries and supporting modules with 3-4 annular channels.  相似文献   

5.
This study describes the development of a microfluidic device for the high-throughput screening of culture conditions, such as the optimum sodium acetate concentration for promoting rapid growth and high lipid accumulation of Chlamydomonas reinhardtii. An analysis of the microalgal growth on the microfluidic device revealed an optimum sodium acetate concentration of 5.72 g L?1. The lipid content, determined by the 4,4-Difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY® 505/515) staining method, increased with the sodium acetate concentration. The results were found to be statistically reproducible with respect to cell growth and lipid production. Other nutrient conditions, including the nitrogen and phosphorus concentrations, can also be optimized on the same microfluidic platform. The microfluidic device performance results agreed well with the results obtained from the flask-scale experiments, validating that the culture conditions were scalable. Finally, we, for the first time, established a method for the absolute quantification of the microalgal lipid content in the picoliter culture volumes by comparing the on-chip and off-chip data. In conclusion, we successfully demonstrated the high-throughput screening of sodium acetate concentrations that induced high growth rates and high lipid contents in C. reinhardtii cells on the microfluidic device.
Figure
We have developed a microfluidic device for the high-throughput screening of culture conditions for promoting rapid growth and high lipid accumulation of Chlamydomonas reinhardtii  相似文献   

6.
The saccharification of marine microalgae using amylase from marine bacteria in saline conditions was investigated. An amylase-producing bacterium, Pseudoalterimonas undina NKMB 0074 was isolated and identified. The green microalga NKG 120701 was determined to have the highest concentration of intracellular carbohydrate and was found from our algal culture stocks. P. undina NKMB 0074 was inoculated into suspensions containing NKG 120701 cells and increasingly reduced suspended sugars with incubation time. Terrestrial amylase and glucoamylase were inactive in saline suspension. Therefore, marine amylase is necessary in saline conditions for successful saccharification of marine microalgae.  相似文献   

7.
Matsui T  Franzke J  Manz A  Janasek D 《Electrophoresis》2007,28(24):4606-4611
This paper reports the application of temperature gradient focusing (TGF) in a PDMS/glass hybrid microfluidic chip. With TGF, by the combination of a temperature gradient along a microchannel, an applied electric field, and a buffer with a temperature-dependent ionic strength, analytes are focused by balancing their electrophoretic velocities against the bulk velocity of the buffer containing the analytes. In this work, Oregon Green 488 carboxylic acid was concentrated approximately 30 times as high as the initial concentration in 45 s at moderate electric strength of 70 V/cm and a temperature gradient of 55 degrees C across the PDMS/glass hybrid microfluidic chip with a 1 cm long capillary.  相似文献   

8.
Biological cells in vivo typically reside in a dynamic flowing microenvironment with extensive biomechanical and biochemical cues varying in time and space. These dynamic biomechanical and biochemical signals together act to regulate cellular behaviors and functions. Microfluidic technology is an important experimental platform for mimicking extracellular flowing microenvironment in vitro. However, most existing microfluidic chips for generating dynamic shear stress and biochemical signals require expensive, large peripheral pumps and external control systems, unsuitable for being placed inside cell incubators to conduct cell biology experiments. This study has developed a microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow. Further, based on the lumped-parameter and distributed-parameter models of multiscale fluid dynamics, the oscillatory flow field and the concentration field of biochemical factors has been simulated at the cell culture region within the designed microfluidic chip. Using the constructed experimental system, the feasibility of the designed microfluidic chip has been validated by simulating biochemical factors with red dye. The simulation results demonstrate that dynamic shear stress and biochemical signals with adjustable period and amplitude can be generated at the cell culture chamber within the microfluidic chip. The amplitudes of dynamic shear stress and biochemical signals is proportional to the pressure difference and inversely proportional to the flow resistance, while their periods are correlated positively with the flow capacity and the flow resistance. The experimental results reveal the feasibility of the designed microfluidic chip. Conclusively, the proposed microfluidic generator based on autonomously oscillatory flow can generate dynamic shear stress and biochemical signals without peripheral pumps and external control systems. In addition to reducing the experimental cost, due to the tiny volume, it is beneficial to be integrated into cell incubators for cell biology experiments. Thus, the proposed microfluidic chip provides a novel experimental platform for cell biology investigations.  相似文献   

9.
We have developed a prototype three-channel microfluidic chip that is capable of generating a linear concentration gradient within a microfluidic channel and is useful in the study of bacterial chemotaxis. The linear chemical gradient is established by diffusing a chemical through a porous membrane located in the side wall of the channel and can be established without through-flow in the channel where cells reside. As a result, movement of the cells in the center channel is caused solely by the cells chemotactic response and not by variations in fluid flow. The advantages of this microfluidic chemical linear gradient generator are (i) its ability to produce a static chemical gradient, (ii) its rapid implementation, and (iii) its potential for highly parallel sample processing. Using this device, wildtype Escherichia coli strain RP437 was observed to move towards an attractant (e.g., l-asparate) and away from a repellent (e.g., glycerol) while derivatives of RP437 that were incapable of motility or chemotaxis showed no bias of the bacteria's distribution. Additionally, the degree of chemotaxis could be easily quantified using this assay in conjunction with fluorescence imaging techniques, allowing for estimation of the chemotactic partition coefficient (CPC) and the chemotactic migration coefficient (CMC). Finally, using this approach we demonstrate that E. coli deficient in autoinducer-2-mediated quorum sensing respond to the chemoattractant l-aspartate in a manner that is indistinguishable from wildtype cells suggesting that chemotaxis is insulated from this mode of cell-cell communication.  相似文献   

10.
Caenorhabditis elegans, one of the widely studied model organisms, sense external chemical cues and perform relative chemotaxis behaviors through its simple chemosensory neuronal system. To study the mechanism underlying chemosensory behavior, a rapid and reliable method for quantitatively analyzing the worms' behaviors is essential. In this work, we demonstrated a microfluidic approach for investigating chemotaxis responses of worms to chemical gradients. The flow-based microfluidic chip was consisted of circular tree-like microchannels, which was able to generate eight flow streams containing stepwise chemical concentrations without the difference in flow velocity. Worms' upstream swimming into microchannels with various concentrations was monitored for quantitative analysis of the chemotaxis behavior. By using this microfluidic chip, the attractive and repellent responses of C. elegans to NaCl were successfully quantified within several minutes. The results demonstrated the wild type-like repellent responses and severely impaired attractive responses in grk-2 mutant animals with defects in calcium influx. In addition, the chemotaxis analysis of the third stage larvae revealed that its gustatory response was different from that in the adult stage. Thus, our microfluidic method provided a useful platform for studying the chemosensory behaviors of C. elegans and screening of chemosensation-related chemical drugs.  相似文献   

11.
Yang CG  Wu YF  Xu ZR  Wang JH 《Lab on a chip》2011,11(19):3305-3312
An integrated microfluidic concentration gradient chip was developed for generating stepwise concentrations in high-density channels and applied to high-throughput apoptosis analysis of human uterine cervix cancer (HeLa) cells. The concentration gradient was generated by repeated splitting-and-mixing of the source solutions in a radial channel network which consists of multiple concentric circular channels and an increasing number of branch channels. The gradients were formed over hundreds of branches with predictable concentrations in each branch channel. This configuration brings about some distinctive advantages, e.g., more compact and versatile design, high-density of channels and wide concentration ranges. This concentration gradient generator was used in perfusion culture of HeLa cells and a drug-induced apoptosis assay, demonstrated by investigating the single and combined effects of two model anticancer drugs, 5-fluorouracil and Cyclophosphamide, which were divided into 65 concentrations of the two drugs respectively and 65 of their combinatorial concentrations. The gradient generation, the cell culture/stimulation and staining were performed in a single chip. The present device offers a unique platform to characterize various cellular responses in a high-throughput fashion.  相似文献   

12.
We developed a low-cost multi-core inertial microfluidic centrifuge (IM-centrifuge) to achieve a continuous-flow cell/particle concentration at a throughput of up to 20 mL/min. To lower the cost of our IM-centrifuge, we clamped a disposable multilayer film-based inertial microfluidic (MFIM) chip with two reusable plastic housings. The key MFIM chip was fabricated in low-cost materials by stacking different polymer-film channel layers and double-sided tape. To increase processing throughput, multiplexing spiral inertial microfluidic channels were integrated within an all-in-one MFIM chip, and a novel sample distribution strategy was employed to equally distribute the sample into each channel layer. Then, we characterized the focusing performance in the MFIM chip over a wide flow-rate range. The experimental results showed that our IM-centrifuge was able to focus various-sized particles/cells to achieve volume reduction. The sample distribution strategy also effectively ensured identical focusing and concentration performances in different cores. Finally, our IM-centrifuge was successfully applied to concentrate microalgae cells with irregular shapes and highly polydisperse sizes. Thus, our IM-centrifuge holds the potential to be employed as a low-cost, high-throughput centrifuge for disposable use in low-resource settings.  相似文献   

13.
Spatial microgravity is a significant factor affecting and causing physiological changes of organisms in space environment. On‐site assessment of the damage associated to microgravity is very important for future long‐term space exploration of mankind. In this paper, a new microfluidic device for analyzing the damage of microgravity on Caenorhabditis elegans (C. elegans) has been developed. This device is mainly composed of a microfluidic chip, a dual imaging module, and an imaging acquisition and processing module, which are integrated into a compact system. The microfluidic chip is designed as a platform for monitoring C. elegans, which is captured in an imaging region through a suction structure in the microfluidic chip. A dual imaging module is designed to obtain the images of bright field and fluorescence of C. elegans. The behaviors of C. elegans are analyzed based on the dual‐mode imaging of bright field and fluorescence to assess the degree of damage due to microgravity. A comparative study using a commercial microscope is also conducted to demonstrate the unique advantage of the developed system under the simulated microgravity. The results show that the developed system can evaluate the damage of C. elegans under microgravity accurately and conveniently. Furthermore, this device has compact size and weight, easy operation, and low‐cost, which could be highly advantageous for on‐site evaluation of the damage to microorganisms under microgravity in a space station.  相似文献   

14.
集成核酸提取的实时荧光PCR微全分析系统将核酸提取、PCR扩增与实时荧光检测进行整合,在同一块微流控芯片上实现了核酸分析过程的全自动和全封闭,具有试剂用量少、分析速度快、操作简便等优点。本研究采用微机械加工技术制作集成核酸提取微流控芯片的阳极模,使用组合模具法和注塑法制作具有3D通道的PDMS基片,与玻璃基底通过等离子体键合封装成集成核酸提取芯片。构建了由微流体速度可调节(0~10 mL/min)的驱动控制装置、温控精度可达0.1℃的TEC温控平台、CCD检测功能模块等组成的微全分析系统。以人类血液裂解液为样品,采用硅胶膜进行芯片上核酸提取。系统根据设置好的时序自动执行,以2 mL/min的流体驱动速度完成20μL裂解液上样、清洗;以1 mL/min的流体驱动速度完成DNA洗脱,抽取PCR试剂与之混合注入到反应腔。提取的基因组DNA以链上内参基因GAPDH为检测对象,并以传统手工提取为对照,在该系统平台上进行PCR扩增和熔解曲线分析实验。片上PCR扩增结果显示,扩增曲线明显,Ct值分别为25.3和26.9。扩增产物进行熔解曲线分析得到的熔解温度一致,均为89.9℃。结果表明,此系统能够自动化、全封闭的在微流控芯片上完成核酸提取、PCR扩增与实时定量分析。  相似文献   

15.
With the fast development of microalgal biofuel researches, the proteomics studies of microalgae increased quickly. A filter-aided sample preparation (FASP) method is widely used proteomics sample preparation method since 2009. Here, a method of microalgae proteomics analysis based on modified filter-aided sample preparation (mFASP) was described to meet the characteristics of microalgae cells and eliminate the error caused by over-alkylation. Using Chlamydomonas reinhardtii as the model, the prepared sample was tested by standard LC-MS/MS and compared with the previous reports. The results showed mFASP is suitable for most of occasions of microalgae proteomics studies.  相似文献   

16.
Microalgal lipids were separated into two fractions, triacylglycerols (TAGs) and free fatty acids (FFAs), by solid-phase extraction employing sodium carbonate as the sorbent and dichloromethane (20% by volume) in n-hexane as the extracting solvent. The TAG fraction was then saponified, followed by acidification, extraction and tert-butyldimethylsilyl esterification. The FFA fraction was directly acidified, extracted and derivatized. From the lipid extracts of eight microalgal species examined, a total of 13 fatty acids were detected in the TAG fractions and nine were found in the FFA fractions, with at much higher total TAG content in all microalgae. Oleic acid was the most prominent fatty acid in three species, α-linolenic acid was more abundant in two others, and palmitic acid was present in highest concentration in the remaining three species.  相似文献   

17.
A microfluidic chip featuring laminar flow-based parallel gradient-generating networks was designed and fabricated. The microchip contains 5 gradient generators and 30 cell chambers where the resulting concentration gradients of drugs are delivered to stimulate on-chip cultured cells. The microfluidics exploits the advantage of lab-on-a-chip technology by integrating the generation of drug concentration gradients and a series of cell operations including seeding, culture, stimulation and staining into a chip. The microfluidic network was patterned on a glass wafer, which was further bonded to a PDMS film. A series of weir structures were fabricated on the cell culture reservoir to facilitate cell positioning and seeding. Cell injection and fluid delivery were controlled by a syringe pump. Steady parallel concentration gradients were generated by flowing two fluids in each network. Over time observation shows that the microchip was suitable for cell seeding and culture. The microchip described above was applied in studying the role of reduced glutathione (GSH) in mediating chemotherapy sensitivity of MCF-7 cells. MCF-7 cells were treated with concentration gradients of As2O3 and N-acetyl cysteine (NAC) for GSH modulation, followed by exposure to adriamycin. GSH levels were down-regulated upon As2O3 treatment and up-regulated upon NAC treatment. Suppression of intracellular GSH by treatment with As2O3 has been shown to increase sensitivity to adriamycin. Conversely, elevation of intracellular GSH by treatment with NAC leads to increased drug resistance. The integrated microfluidic chip is able to perform multiparametric pharmacological profiling with easy operation, and thus holds great potential for extrapolation to the cell based high-content drug screening. __________ Translated from Chinese Journal of Analytical Chemistry, 2008, 36(2): 143–149  相似文献   

18.
Lin F  Saadi W  Rhee SW  Wang SJ  Mittal S  Jeon NL 《Lab on a chip》2004,4(3):164-167
This paper describes a microfluidic approach to generate dynamic temporal and spatial concentration gradients using a single microfluidic device. Compared to a previously described method that produced a single fixed gradient shape for each device, this approach combines a simple "mixer module" with gradient generating network to control and manipulate a number of different gradient shapes. The gradient profile is determined by the configuration of fluidic inputs as well as the design of microchannel network. By controlling the relative flow rates of the fluidic inputs using separate syringe pumps, the resulting composition of the inlets that feed the gradient generator can be dynamically controlled to generate temporal and spatial gradients. To demonstrate the concept and illustrate this approach, examples of devices that generate (1) temporal gradients of homogeneous concentrations, (2) linear gradients with dynamically controlled slope, baseline, and direction, and (3) nonlinear gradients with controlled nonlinearity are shown and their limitations are described.  相似文献   

19.
A simple but robust droplet-based microfluidic system was developed for dose–response enzyme inhibition assay by combining concentration gradient generation method with electrochemical detection method. A slotted-vials array and a tapered tip capillary were used for reagents introduction and concentration gradient generation, and a polydimethylsiloxane (PDMS) microfluidic chip integrated with microelectrodes was used for droplet generation and electrochemical detection. Effects of oil flow rate and surfactant on electrochemical sensing were investigated. This system was validated by measuring dose–response curves of three types of acetylcholinesterase (AChE) inhibitors, including carbamate pesticide, organophosphorus pesticide, and therapeutic drugs regulating Alzheimer's disease. Carbaryl, chlorpyrifos, and tacrine were used as model analytes, respectively, and their IC50 (half maximal inhibitory concentration) values were determined. A whole enzyme inhibition assay was completed in 6 min, and the total consumption of reagents was less than 5 μL. This microfluidic system is applicable to many biochemical reactions, such as drug screening and kinetic studies, as long as one of the reactants or products is electrochemically active.  相似文献   

20.
《中国化学快报》2023,34(2):107360
Screening of foodborne pathogens is important to prevent contaminated foods from their supply chains. In this study, a portable detection device was developed for rapid, sensitive and simple detection of viable Salmonella using a finger-actuated microfluidic chip and an improved recombinase aided amplification (RAA) assay. Improved propidium monoazide (PMAxx) was combined with RAA to enable this device to distinguish viable bacteria from dead ones. The modification of PMAxx into dead bacteria, the magnetic extraction of nucleic acids from viable bacteria and the RAA detection of extracted nucleic acids were performed using the microfluidic chip on its supporting device by finger press-release operations. The fluorescent signal resulting from RAA amplification of the nucleic acids was collected using a USB camera and analyzed using a self-developed smartphone App to quantitatively determine the bacterial concentration. This device could detect Salmonella typhimurium in spiked chicken meats from 1.3 × 102 CFU/mL to 1.3 × 107 CFU/mL in 2 h with a lower detection limit of 130 CFU/mL, and has shown its potential for on-site detection of foodborne pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号