首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have made a comparison of (a) different surface chemistries of SPR sensor chips (such as carboxymethylated dextran and carboxymethylated C1) and (b) of different assay formats (direct, sandwich and subtractive immunoassay) in order to improve the sensitivity of the determination of the model bacteria Acidovorax avenae subsp. citrulli (Aac). The use of the carboxymethylated sensor chip C1 resulted in a better sensitivity than that of carboxymethylated dextran CM5 in all the assay formats. The direct assay format, in turn, exhibits the best sensitivity. Thus, the combination of a carboxymethylated sensor chip C1 with the direct assay format resulted in the highest sensitivity for Aac, with a limit of detection of 1.6?×?106 CFU mL-1. This SPR immunosensor was applied to the detection of Aac in watermelon leaf extracts spiked with the bacteria, and the lower LOD is 2.2?×?107 CFU mL?1.
Figure
Possible strategies to improve the surface plasmon resonance-based immmunodetection of bacterial cells Acidovorax avenae subsp. citrulli (Aac) was used as a model pathogen. Two different sensor surfaces (carboxymethylated dextran CM5 and carboxymethylated C1) were compared. Direct detection, sandwich system and subtractive assay were investigated. The combination of a C1 chip with the direct assay format resulted in the highest sensitivity for Aac, with a limit of detection of 1.6*106 CFU mL?1  相似文献   

2.
We developed a biosensor based on the surface plasmon resonance (SPR) method for the study of the binding kinetics and detection of human cellular prions (PrPC) using DNA aptamers as bioreceptors. The biosensor was formed by immobilization of various biotinylated DNA aptamers on a surface of conducting polypyrrole modified by streptavidin. We demonstrated that PrPC interaction with DNA aptamers could be followed by measuring the variation of the resonance angle. This was studied using DNA aptamers of various configurations, including conventional single-stranded aptamers that contained a rigid double-stranded supporting part and aptamer dimers containing two binding sites. The kinetic constants determined by the SPR method suggest strong interaction of PrPC with various DNA aptamers depending on their configuration. SPR aptasensors have a high selectivity to PrPC and were regenerable by a brief wash in 0.1 M NaOH. The best limit of detection (4 nM) has been achieved with this biosensor based on DNA aptamers with one binding site but containing a double-stranded supporting part.
Fig
Aptasensors for kinetic evaluation and detection of prions by SPR  相似文献   

3.
We are presenting a method for sensitive and specific detection of microRNA (miRNA) using surface plasmon resonance. A thiolated capture DNA probe with a short complete complementary sequence was immobilized on the gold surface of the sensor to recognize the part sequence of target miRNA, and then an oligonucleotide probe linked to streptavidin was employed to bind the another section of the target. The use of the streptavidin-oligonucleotide complex caused a ~5-fold increase in signal, improved the detection sensitivity by a factor of ~24, and lowered the detection limit to 1.7 fmol of miR-122. This specificity allowed a single mismatch in the target miRNA to be discriminated. The whole assay takes 30 min, and the surface of the sensor can be regenerated at least 30 times without loss in performance. The method was successfully applied to the determination of miRNA spiked into human total RNA samples.
Figure
A surface plasmon resonance (SPR) biosensor was developed for microRNA detection by using streptavidin to enhance SPR signal.  相似文献   

4.
Scanning electrochemical microscopy (SECM) was combined with surface plasmon resonance (SPR) and applied for in-situ monitoring of the incorporation of Hg2+ by apo-metallothionein (apo-MT) immobilized on the SPR substrate. Hg2+ was anodically stripped from the Hg-coated SECM Pt tip and sequestered by apo-MT upon its diffusion to the SPR substrate. The high sensitivity of the SPR instrument enabled the detection of the change in the composition and structure of apo-MT molecules that was induced by the metal sequestration of Hg2+. The SPR response revealed that the saturation co-ordination number of Hg2+ binding to apo-MT was 18. Moreover, an unexpected collapse of the structure of MT was observed when the stoichiometric ratio of Hg2+/MT was ~70, and the structure cannot be further altered even by adding a large excess of Hg2+. This collapse was also confirmed by Raman spectroscopy. The results are potentially useful for a deeper understanding of the detoxification mechanism of MT to mercury ion.
Figure
Scanning electrochemical microscopy combined with surface plasmon resonance was applied to in-situ monitoring of the interaction of Hg2+ with apo-metallothionein. The results revealed that the saturation co-ordination number of Hg2+ binding to apo-metallothionein was 18. Moreover, an unexpected structure collapse of MT is observed when the stoichiometric ratio of Hg2+/MT is ~70.  相似文献   

5.
We report on a novel sensor for the electrochemical determination of thiourea (TU). It is based on an active carbon paste electrode modified with copper oxide nanoparticles. The modified electrode and the electrochemical properties of thiourea on its surface were investigated using cyclic voltammetry and differential pulse voltammetry. Under optimized conditions, the detection limit is 20 μg?L?1 of TU. The method was applied to the determination of thiourea in fruit juice, orange peel and industrial waste water.
Figure
Cyclic voltammograms of ACPE (A), CuO/ACPE (B) and CuO/CPE (C) in pH 8 phosphate buffered saline.  相似文献   

6.
Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18?% and 5?%, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies.
Figure
Schematic diagram of Ab-Ag interaction on MNPs confined Au surface (left) and SPR study on the immunoactivity of BSA adsorbed on MNPs (right).  相似文献   

7.
We show that the antigen CFP-10 (found in tissue fluids of tuberculosis patients) can be used as a marker protein in a surface-plasmon resonance (SPR) based method for early and simplified diagnosis of tuberculosis. A sandwich SPR immunosensor was constructed by immobilizing the CFP-10 antibody on a self-assembled monolayer on a gold surface, this followed by blocking it with bovine serum albumin. Following exposure of the sensor surface to a sample containing CFP-10, secondary antibody immobilized on nickel oxide nanoparticles are injected which causes a large SPR signal change. The method has a dynamic range from 0.1 to around 150 ng per mL of CFP-10, and a detection limit as low as 0.1 ng per mL. This is assumed to be due to the high amplification power of the NiO nanoparticles.
Figure
Schematic diagram of sensor chip configuration (left) and SPR study based on amplification strategy with NiO nanoparticles (right).  相似文献   

8.
We have developed a resonance light scattering (RLS) quenching assay for the highly sensitive determination of doxorubicin (DOX) and daunorubicin (DAU). It is based on the reduction of the intensity of the shoulder of the RLS spectra at 443?nm. The intensity of the RLS of the ethidium-DNA system decrease linearly on addition of trace quantities of DOX or DAU within the concentration range of 0.008 to 12.0???g?mL?1 for DOX, and of 0.010 to 21.0???g?mL?1 for DAU. The detection limits are 3.0 and 5.0?ng?mL?1, respectively. The assay was successfully applied to the determination of DAU in synthetic and serum samples. Compared to the reported methods for anthracyclines, this assay displays higher sensitivity, lower detection limits, and a wider linear range.
Graphical abstract
The addition of trace amount of drugs into the EB-DNA system can induce the decreased RLS intensity of EB-DNA system at the shoulder peak in BR buffer solution (pH 2.0). Besides, the decrement of RLS intensities was proportional to the concentration of drugs. Based on this phenomenon, a new RLS assay for the detection of anthracycline antibiotics was developed.  相似文献   

9.
In this research, a mixed immunoassay design for multiple chemical residues detection based on combined reverse competitive enzyme-linked immunosorbent assay (ELISA) procedure was developed. This method integrated two reverse ELISA reactions in one assay by labeling horseradish peroxidase to deoxynivalenol (DON) and orbifloxacin. Within this method, IC50 of the two mAbs for each analyte we produced ranged from 23?~?68 ng?mL?1 for DONs and 4.1?~?49 ng?mL?1 for quinolones (QNs). The limit of detection measured by IC10 was achieved at 0.45–1.3 ng?mL?1 for DONs and 0.59–6.9 ng?mL?1 for QNs, which was lower than the maximum residue levels. Recoveries in negative samples spiked at concentrations of 100, 200, and 500 ng?mL?1 ranged from 91.3 to 102.2 % for DONs and 88.7–98.05 % for QNs with relative standard deviation less than 9.88 and 12.67 %. The results demonstrated that this developed immunoassay was suitable for screening of low molecular weight contaminants.
Figure
Combined reverse ELISA procedure for multi-chemical residues analysis  相似文献   

10.
We report on a nanostructured self-doped polypyrrole (SPPy) film that was prepared by an electrochemical technique in an electrolyte containing fluorosulfonic acid as the sulfonation reagent. The film was applied as a new fiber material for solid-phase microextraction (SPME) of the pesticides lindane, heptachlor, aldrin, endosulfans I and II prior to their quantitation by GC with electron capture detection. The SPPy nanoparticles have a diameter of <100?nm. The introduction of covalently bound sulfo groups into the backbone of the polymer resulted in improved temperature resistance (~350?°C) and satisfactory extraction efficiency. The thermal stability of the SPPy fiber is superior to common polypyrrole fibers. Extraction was optimized by means of the Taguchi orthogonal array experimental design with an OA16 (45) matrix including extraction temperature, extraction time, salt concentration, stirring rate, and headspace volume. The method displays good repeatability (RSD?<?6%) and linearity (in the range from 0.78 to 100?ng?mL?1; with an R2 of >0.998. The detection limits are <0.23?ng?mL?1. The method was successfully applied to the analysis of the pesticides in skimmed milk and fruit juice samples, and recoveries are from 84?±?1 to 105?±?1%.
Figure
Self–doped nanostructured polypyrrole-based coating was used for SPME analysis of some organochlorine pesticides in milk and fruit juice samples. Improved temperature resistance (~350°C) was obtained for the new developed fiber rather than common used polypyrrole coating.  相似文献   

11.
We report on an investigation of the optical properties of gold nanoparticles assembled as thin films of different thickness. The nanoparticles were linked to the surface of a gold chip by dithiol reagents and studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. There is good correlation between the experimental findings and theoretical simulation, and the respective data reveal the presence of ordered nanostructures in the assemblies. The shift in the SPR angle is linearly dependent on the particle size and the ratio of the different particles. SPR spectroscopy also reveals important information in terms of the optical constants of such films. This shall be further applied to in-situ quality control in the fabrication of optoelectronic, solar cell and semiconductor devices.
Figure
SPR angle shifts according to the immobilization of gold nanoparticles with different size on BDMT SAM  相似文献   

12.
A glassy carbon electrode modified with organic?Cinorganic pillared montmorillonite was used for voltammetric detection of mercury(II) in water. High sensitivity is obtained due to the use of the montmorillonites which displays outstanding capability in terms of adsorbing mercury ion due to its high specific surface and the presence of multiple binding sites. The experimental parameters and the effect of a chelating agent were optimized to further enhance sensitivity and selectivity. Linear calibration curves were obtained over the Hg(II) concentration range from 10 to 800???g?L?1 for 5?min accumulation, with a detection limit of 1???g?L?1. Simultaneous determination of Hg(II) and Cu(II) was also studied, and no interference was observed.
Figure
Scheme for the Organic-inorganic pillared clay adsorbing mercury.  相似文献   

13.
A reagentless d-sorbitol biosensor based on NAD-dependent d-sorbitol dehydrogenase (DSDH) immobilized in a sol–gel carbon nanotubes–poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD+ cofactor with DSDH in a sol–gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of d-sorbitol at 0.2 V with a sensitivity of 8.7?μA?mmol?1?L?cm?2 and a detection limit of 0.11 mmol?L?1. Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
Figure
Reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in sol-gel/carbon nanotubes/poly(methylene green) composite  相似文献   

14.
We demonstrate that base mismatches of caspase-3 DNA sequences can be detected by surface plasmon resonance (SPR) following signal amplification by polymerase from Thermus aquaticus (Taq). The concentration of magnesium ions and the respective dNTPs for polymerase binding to the oligonucleotides on the sensing surface were optimized. Taq polymerase binds to double-stranded DNA that is self-assembled on the gold surface of the biosensor to induce an SPR signal. Experiments are presented on the effect of Mg(II) and dNTP concentrations on the activity of the polymerase on the sensing surface. The detection limits are 50 pM, 0.1 nM, 0.7 nM, 7 nM, and 20 nM for correctly matched, single-base mismatched, two-base mismatched, three-base mismatched and four-base mismatched DNA of caspase-3, respectively. This is attributed to the optimized experimental conditions, with samples containing 2 μM of Mg(II) and 0.3 mM of dNTP.
Figure
The process of detecting mismatched caspase-3 DNA oligonucleotides with SPR biosensor  相似文献   

15.
Nanoporous gold (NPG) was utilized as a support for immobilizing alkaline phosphatase (ALP) conjugated to monoclonal antibodies against either prostate specific antigen (PSA) or carcinoembryonic antigen (CEA). The antibody-ALP conjugates were coupled to self-assembled monolayers of lipoic acid and used in direct kinetic assays. Using the enzyme substrate p-aminophenylphosphate, the product p-aminophenol was detected by its oxidation near 0.1?V (vs. Ag|AgCl) using square wave voltammetry. The difference in peak current arising from oxidation of p-aminophenol before and after incubation with biomarker increased with biomarker concentration. The response to these two biomarkers was linear up to 10?ng mL?1 for CEA and up to 30?ng mL?1 for PSA. The effect of interference on the PSA assay was studied using bovine serum albumin (BSA) as a model albumin protein. The effect of interference from a serum matrix was examined for the PSA assay using newborn calf serum. A competitive version of the immunoassay using antigen immobilized onto the NPG surface was highly sensitive at lower antigen concentration. Estimates of the surface coverage of the antibody-ALP conjugates on the NPG surface are presented.
Figure
Use of nanoporous gold as a support for a direct kinetic assay of antibody-antigen binding is demonstrated using square-wave voltammetry.  相似文献   

16.
An ultra-sensitive DNA microspot assay was developed that required 1.8?nL samples and was based on single-molecule detection. The solution of the target DNA (tDNA) was spotted onto the coverslip modified with capture DNA (DNA1) and blocked with ethanolamine and bovine serum albumin using a pintool type microspoting robot. The microspot had a diameter of ~300???m. The tDNA was captured by the DNA1, and the tDNA was then labeled with a detection DNA that previously was labeled with a quantum dot. Next, a fluorescence microscopic image of the microspot was acquired using a single-molecule microspot reader during total internal reflection fluorescence excitation. As little as 4?×?10?22 mole (240 molecules) of tDNA can be detected by this method. The response is linear in the range from 6.0?×?10?22 to 1.2?×?10?19 mole of tDNA. All operations (including the acquisition of microspot images and single-molecule counting) were performed using the MetaMorph software. The assay was applied to the determination of osteopontin messenger RNA in single decidual stromal cells without the need for PCR amplification.
Figure
A DNA microspot assay with a limit of detection of 240 molecules was developed that requires 1.8 nL samples and is based on single-molecule detection. The assay was applied to the determination of osteopontin messenger RNA in single decidual stromal cells without the need for PCR amplification.  相似文献   

17.
We have developed a heterologous direct competitive enzyme-linked immunosorbent assay (ELISA) and a visual colloidal gold-based immunochromatographic assay (CGIA) for simultaneous determination of ofloxacin, marbofloxacin, and fleroxacin residues in milk using polyclonal antibodies. The half-maximum inhibition concentrations (IC50) of ofloxacin, marbofloxacin, fleroxacin, and limits of detection (LODs; calculated as IC15 values) are between 0.20 and 0.53?ng mL?1, and between 0.02 and 0.05?ng mL?1, respectively. The average recoveries range from of 78% to 113%, and the coefficients of variation of intra- and inter-assays are between 2 and 11%, and 3 to 19%, respectively. The LODs for ofloxacin, marbofloxacin, fleroxacin in milk are between 3.5 and 8.9?ng mL?1. The visual minimum detection limit of the optimized CGIA is 2?ng mL?1 for milk samples. The detection process can be completed within 10?min. The strips can be stored at 4?°C for 8?weeks without significant loss of activity. The results of the analysis of spiked samples showed that the CGIA can be applied to preliminary, fast, and on-site screening of milk samples. The ELISA and CGIA allow for a rapid, sensitive, and low-cost determination of (fluoro)quinolones residues in milk samples.
Figure
A direct competitive enzyme-linked immunosorbent assay (ELISA) and a visual colloidal gold-based immunochromatographic assay (CGIA) are proposed for simultaneous determination of ofloxacin, marbofloxacin, and fleroxacin residues in milk using polyclonal antibodies  相似文献   

18.
A new immunoassay has been developed based on a commercially available anti-caffeine monoclonal antibody and a de novo synthesized tracer, using horseradish peroxidase and UV–visible detection. Caffeine, which is frequently found in surface waters, can be quantified with a relative error lower than 20% for concentrations above 0.025 μg L?1 (limit of quantitation, direct analysis). The limit of detection is 0.001 μg L?1 and can be reduced by solid-phase extraction (SPE). Moreover, with minor adaptations, the assay can be used to quantify caffeine in several beverages, shampoo, and caffeine tablets. The results obtained by ELISA correlate well with those from liquid chromatography–tandem mass spectrometry (LC–MS–MS) for the tested matrices. Several surface waters from Berlin were analysed and all tested positive for caffeine, with concentrations higher than 0.030 μg L?1. In one run 66 samples can be analysed within 2 h.
Figure
A caffeine ELISA is described that allows sensitive and selective analysis of surface water concentrations as well as determination of caffeine in beverages.  相似文献   

19.
An enzyme-linked immunosorbent assay, a horseradish peroxidase-catalyzed fluorogenic reaction, and chemiluminescence (CL) analysis have been combined to develop a sandwich ELISA for Staphylococcal enterotoxin B (SEB) using monoclonal antibodies for different epitopes of SEB. The enzyme catalyzed reaction of 3-(4-hydroxyphenyl propionate) with the urea complex of hydrogen peroxide produced a fluorescent dimer which was detected by chemiluminescence analysis. The CL response to SEB is linear in the range from 6.0 to 564?pg?mL?1 (r?=?0.9993), and the detection limit is 3.3?pg?mL?1 (S/N?=?3). Intra- and interassay coefficients of variation are <7.0% at three concentrations (24, 96 and 384?pg?mL?1). The method was applied to the analysis of SEB in serum, lake water and milk samples. The results compared well with those obtained by conventional ELISAs.
Figure
Procedures of the proposed method. A sandwich ELISA for Staphylococcal enterotoxin B (SEB) using a pair of monoclonal antibodies that recognizes different epitopes of SEB. After the ELISA procedure, PHPPA is reacted with Hydrogen peroxide-urea, with catalysis by HRP-conjugated anti-SEB, to produce PHPPA fluorescent Dimer, which is detected by TCPO chemiluminescence.  相似文献   

20.
We report on a multiplex bead-based competitive immunoassay using suspension array technology for the simultaneous detection of the pesticides triazophos, carbofuran and chlorpyrifos. Three hapten-protein conjugates were covalently bound to carboxylated fluorescent microspheres to serve as probes. The amount of conjugates and antibodies were optimized. The new multi-analyte assay has dynamic ranges of 0.02–50 ng?mL?1, 0.5–500 ng?mL?1 and 1.0–1000 ng?mL?1 for triazophos, carbofuran and chlorpyrifos, respectively, and the detection limits are 0.024, 0.93 and 1.68 ng?mL?1. This new multiplex assay is superior to the traditional ELISA in possessing a wider detection range, better reproducibility and the feature of multi-target detection. Cross-reactivity studies indicated that the bead-array method is highly selective for the three target pesticides, and that individual analyses have no significant influence between each other, also without cross-reactions from other structurally related pesticides. The method was applied to analyze vegetables spiked with the three pesticides, and the recoveries were in ranges of 78.5–112.1 %, 72.2–120.2 % and 70.2–112.8 %, respectively, with mean coefficients of variation of <15 %.
Figure
Schematic illustration of the multiplex bead-based competitive immunoassay  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号