首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This is the first one of three companion papers focusing on the “probabilistic evolution approach (PEA)” which has been developed for the solution of the explicit ODE involving problems under certain consistent impositions. The main purpose here is the determination of the expectation value of a given operator in quantum mechanics by solving only ODEs, not directly using the wave function. To this end we first define a basis operator set over the Kronecker powers of an appropriately defined “system operator vector”. We assume that the target operator’s commutator with the system’s Hamiltonian can be expressed in terms of the above-mentioned basis operators. This assumption leads us to an infinite set of linear homogeneous ODEs over the expectation values of the basis operators. Its coefficient matrix is in block Hessenberg form when the target operator has no singularity, and beyond that, it may become block triangular when certain conditions over the system’s potential function are satisfied. The initial conditions are the basic determining agents giving the probabilistic nature to the solutions of the obtained infinite set of ODEs. They may or may not have fluctuations depending on the nature of the probability density. All these issues are investigated in a phenomenological and constructive theoretical manner in this paper. The remaining two papers are devoted to further details of PEA in quantum mechanics, and, the application of PEA to systems defined by Liouville equation.  相似文献   

2.
Probabilistic evolution theory (PREVTH) is used for the solution of initial value problems of first order explicit autonomous ordinary differential equation sets with second degree multinomial right hand side functions. It is an approximation method based on Kronecker power series: a rewriting of multivariate Taylor series using matrices having certain flexible parameters. Kronecker power series have matrices which are called telescope matrices: \(n \times n^{j+1}\) matrices where j is the index of summation. The additive terms of each telescope matrix is formed through Kronecker product from both sides by Kronecker powers of identity matrices. Recently, squarification is proposed in order to avoid the growing of the matrices in size at each additive term of the series. This paper explains the squarification procedure: the procedure used in order to avoid Kronecker multiplications within PREVTH so that the sizes of the matrices do not grow and so that the amount of necessary computation is reduced. The recursion between squarified matrices is also given. As a numerical application, the solution of a Hénon–Heiles system is provided.  相似文献   

3.
We show using two simple nonlinear quantum systems that the infinite set of quantum dynamical variables, as introduced in quantized Hamilton dynamics [O. V. Prezhdo and Y. V. Pereverzev, J. Chem. Phys. 113, 6557 (2000)], behave as a thermostat with respect to the finite number of classical variables. The coherent classical component of the evolution decays by coupling to the chaotic quantum reservoir. The classical energy, understood as the part of system energy expressible through the average values of coordinates and momenta, is transferred to the quantum energy expressible through the higher moments of coordinates and momenta and other quantum variables. At long times, the classical variables reach equilibrium, and the classical energy fluctuates around the equilibrium value. These phenomena are illustrated with the exactly solvable Jaynes-Cummings model and a nonlinear oscillator.  相似文献   

4.
This is the first one of two companion papers focusing on the establishment of a new path for the expectation value dynamics of the quantum mechanical operators. The main goal of these studies is to do quantum mechanics without explicitly solving Schrödinger wave equation, in other words, without using wave functions except their initially given forms. This goal is achieved by using Ehrenfest theorem and utilizing probabilistic evolution approach (PEA). PEA, first introduced by Metin Demiralp, is a method providing solutions to the nonlinear ordinary differential equations by transforming them to a set of linear ODEs at the cost of denumerably infinite dimensionality. It is recently shown that this method produces analytic solutions, if the initial conditions are given appropriately at some special cases. However, generalization of these conditions to the quantum mechanical applications is not straightforward due to the dispersion of the quantum mechanical systems. For this purpose, multivariate moment problems for the integral representation of the Kronecker power series are introduced and then solved yielding to more specific and precise convergence analysis for the quantum mechanical applications.  相似文献   

5.
6.
This paper considers the prospect for there being multiple solutions to the control of classically modelled molecular dynamical systems. The research presented here follows up on a parallel study based on quantum mechanics. For polyatomic molecules it is generally expected that a classical mechanical model will be adequate and necessary as a means for designing optical fields for molecular control. The prospect for multiple control field solutions existing in this domain is important to establish in terms of ultimate laboratory realization of molecular control. A general formulation of the multiplicity problem is considered and the existence of a denumerably infinite number of solutions for the control field amplitude is shown to be the case under certain mild limitations on the physical variables.  相似文献   

7.
In our earlier paper (Ref. 1 ) we developed an integrated probabilistic system for predicting the subcellular localization of proteins and estimating the relative populations of the various compartments in yeast. To justify our formulas we show here that there is a one‐to‐one correspondence between our previous calculations and the prediction of a state of a many‐particle quantum system. The equivalence between these two types of predictions can be easily established if one maps the probability of finding a particular protein in a certain subcellular compartment to the probability of measuring the corresponding quantum particle in one of the possible quantum states (the number of proteins being equal to the number of particles in the system, and the number of compartments being equal to the number of achievable quantum states). Once the sought correspondence is established, we can utilize a well‐known formula from quantum statistical mechanics to calculate the overall occupation of a particular quantum state, associating the state with the corresponding subcellular compartment. In the present work we present the details of how we arrived at the formula for the compartment population, borrowing the tools from quantum statistical mechanics. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

8.
This paper is the second in a series of two. The first paper has been devoted to the detailed explanation of the mathematical formulation of the underlying theoretical framework. Specifically, the first paper shows that it is possible to construct an infinite linear ODE set, which describes a probabilistic evolution. The evolution is probabilistic because the unknowns are expectations, with appropriate initial conditions. These equations, which we name, Probabilistic Evolution Equations (PEE) are linear at the level of ODEs and initial conditions. In this paper, we first focus on the phenomenological reasoning that lead us to the derivation of PEE. Second, the aspects of the PEE construction is revisited with a focus on the spectral nature of the probabilistic evolution. Finally, we postulate fruitful avenues of research in the fields of dynamical causal modeling in human neuroimaging and effective connectivity analysis. We believe that this final section is a prime example of how the rigorous methods developed in the context of mathematical chemistry can be influential in other fields and disciplines.  相似文献   

9.
The theoretical framework for higher-order correlation functions involving multiple times and multiple points in a classical, many-body system developed by Van Zon and Schofield [Phys. Rev. E 2002, 65, 011106] is extended here to include tagged particle densities. Such densities have found an intriguing application as proposed measures of dynamical heterogeneities in structural glasses. The theoretical formalism is based upon projection operator techniques which are used to isolate the slow time evolution of dynamical variables by expanding the slowly evolving component of arbitrary variables in an infinite basis composed of the products of slow variables of the system. The resulting formally exact mode-coupling expressions for multiple-point and multiple-time correlation functions are made tractable by applying the so-called N-ordering method. This theory is used to derive for moderate densities the leading mode coupling expressions for indicators of relaxation type and domain relaxation, which use dynamical filters that lead to multiple-time correlations of a tagged particle density. The mode coupling expressions for higher order correlation functions are also successfully tested against simulations of a hard sphere fluid at relatively low density.  相似文献   

10.
Basic features of spinodal decomposition, on one side, and nucleation, on the other side, and the transition between both mechanisms are analyzed within the framework of a generalized thermodynamic cluster model based on the generalized Gibbs approach. Hereby the clusters, representing the density or composition variations in the system, may change with time both in size and in their intensive state parameters (density and composition, for example). In the first part of the analysis, we consider phase separation processes in dependence on the initial state of the system for the case when changes of the state parameters of the ambient system due to the evolution of the clusters can be neglected as this is the case for cluster formation in an infinite system. As a next step, the effect of changes of the state parameters on cluster evolution is analyzed. Such depletion effects are of importance both for the analysis of phase formation in confined systems and for the understanding of the evolution of ensembles of clusters in large (in the limit infinite) systems. The results of the thermodynamic analysis are employed in both cases to exhibit the effect of thermodynamic constraints on the dynamics of phase separation processes.  相似文献   

11.
This work reports computed rate coefficients of 90 reactions important in the autocatalytic oxidation of hydroxylamine in aqueous nitric acid. Rate coefficients were calculated using four approaches: Smoluchowski (Stokes-Einstein) diffusion, a solution-phase incarnation of transition state theory based on quantum chemistry calculations, simple Marcus theory for electron-transfer reactions, and a variational TST approach for dissociative isomerization reactions that occur in the solvent cage. Available experimental data were used to test the accuracy of the computations. There were significant discrepancies between the computed and experimental values for some key parameters, indicating a need for improvements in computational methodology. Nonetheless, the 90-reaction mechanism showed the ability to reproduce many of the trends seen in experimental studies of this very complicated kinetic system. This work highlights reactions that may govern the system evolution and branching behavior critical to the stability of the system. We hope that this analysis will guide experimental investigations to reduce the uncertainties in the critical rate coefficients and thermochemistry, allowing an unambiguous determination of the dominant reaction pathways in the system. Advances in efficient and accurate solvation models that effectively separate entropic and enthalpic contributions will most directly benefit solution-phase modeling efforts. Methods for more accurately estimating activity coefficients, including at infinite dilution in multicomponent mixtures, are needed for modeling high ionic strength aqueous systems. A detailed derivation of the solution-phase equilibrium and transition state theory rate expressions in solution is included in the Supporting Information.  相似文献   

12.
《Chemical physics》1987,112(1):67-75
The Morse oscillator hamiltonian is expressed as an infinite expansion in powers of a natural perturbation parameter, the square root of the anharmonicity constant, relative to the simple harmonic oscillator as zeroth-order hamiltonian. A transformation of variables leads to a hamiltonian which involves terms no higher than second order in this natural perturbation parameter. In both cases, the exact bound state eigenvalues of the Morse oscillator are given by second-order perturbation theory. The Schrödinger equation corresponding to the transformed Morse hamiltonian is solved variationally, via a complete set expansion in simple harmonic oscillator eigenstates. Accurate approximations to the exact eigenvalues and eigenfunctions of bound states of the Morse oscillator can be obtained for all but the very highest levels.  相似文献   

13.
14.
In open quantum systems, decoherence occurs through interaction of a quantum subsystem with its environment. The computation of expectation values requires a knowledge of the quantum dynamics of operators and sampling from initial states of the density matrix describing the subsystem and bath. We consider situations where the quantum evolution can be approximated by quantum-classical Liouville dynamics and examine the circumstances under which the evolution can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments exclusively evolving on single adiabatic surfaces, with probabilistic hops between these surfaces. The justification for the reduction depends on the validity of a Markovian approximation on a bath averaged memory kernel that accounts for quantum coherence in the system. We show that such a reduction is often possible when initial sampling is from either the quantum or classical bath initial distributions. If the average is taken only over the quantum dispersion that broadens the classical distribution, then such a reduction is not always possible.  相似文献   

15.
In this paper, we build on our previous research on probabilistic foundations of dynamical systems and introduce a theory of linear representation for ordinary differential equations. The theory is developed for explicit ODEs and can be further extended to cover implicit cases. In this report, we investigate the case of a canonical single unknown autonomous system. First we construct a linear representation to get an infinite linear ODE set with a constant coefficient matrix which can be transformed into an upper triangular form. Then we find its approximate truncated solutions. We describe a number of properties of the theory using this framework. The companion of this paper expands this canonical approach to cover multidimensional cases using the theory of folded arrays which is another line of research established by our research group.  相似文献   

16.
We introduce a new approach to global data fitting based on a regularization condition that invokes continuity in the global data coordinate. Stabilization of the data fitting procedure comes from probabilistic constraint of the global solution to physically reasonable behavior rather than to specific models of the system behavior. This method is applicable to the fitting of many types of spectroscopic data including dynamic light scattering, time-correlated single-photon counting (TCSPC), and circular dichroism. We compare our method to traditional approaches to fitting an inverse Laplace transform by examining the evolution of multiple lifetime components in synthetic TCSPC data. The global regularizer recovers features in the data that are not apparent from traditional fitting. We show how our approach allows one to start from an essentially model-free fit and progress to a specific model by moving from probabilistic to deterministic constraints in both Laplace transformed and nontransformed coordinates.  相似文献   

17.
An explicitly correlated linear-r(12) variational method is developed for a system of two electrons confined to a two-dimensional square well with infinite walls. The wave function is written as an expansion in products of non-negative integer powers of the relative and center-of-mass electronic coordinates and powers of r(12) restricted to 0 and 1. This form indirectly includes higher powers of the interelectronic distance and exhibits a much faster convergence than a similar expansion without r(12)-dependent terms. The method is implemented using high-precision floating-point arithmetic. Ground-state total energies are reported with at least 12 accurate significant figures for squares with sides from 1 to 50 bohrs. The method can be used "as is" for excited states and for two-dimensional rectangular wells. We also show that wave functions for two electrons in a square and in a rectangle have a higher symmetry than can be accounted for by the point group of the system.  相似文献   

18.
A wave function which is other than an exact eigenfunction, if it obeys appropriate analytical conditions, can be considered to represent the initial configuration of a nonstationary state. In the course of its subsequent time development the quantum system exhibits implicitly its entire eigenvalue spectrum. A method based, in principle, on Fourier analysis of the evolving quantum system is applied to the direct calculation of the energy eigenvalue spectrum. The spectral function is expressed as a moment expansion, in terms of expectation values of powers of the Hamiltonian. When the expansion is truncated, as it must be in any practical application, the corresponding spectral function represents a smeared-out eigenvalue spectrum. An alternative approximation leads to the quantum-mechanical method of moments. As the number of terms is increased, the computed spectrum becomes sharper and more accurate. In certain cases the moment expansion can be circumvented, if the action of the evolution operator can be evaluated in closed form. This is equivalent to finding some solution of the time-dependent Schrödinger equation. The various methods of eigenvalue spectroscopy are applied to the harmonic oscillator.  相似文献   

19.
A new ab initio potential energy surface for the ground state of the NO-NO system has been calculated within a reduced dimensionality model. We find an unusually large vibrational dependence of the interaction potential which explains previous spectroscopic observations. The potential can be used to model vibrational energy transfer, and here we perform quantum scattering calculations of the vibrational relaxation of NO(v). We show that the vibrational relaxation for v = 1 is 4 orders of magnitude larger than that for the related O(2)(v) + O(2) system without having to invoke nonadiabatic mechanisms as had been suggested in the past. For highly vibrationally excited states, we predict a strong dependence of the rates on the vibrational quantum number as has been observed experimentally, although there remain important quantitative differences. The importance of a chemically bound isomer on the relaxation mechanism is analyzed, and we conclude it does not play a role for the values of v considered in the experiment. Finally, the intriguing negative temperature dependence of the vibrational relaxation rate constants observed in experiments was studied using an statistical model to include the presence of many asymptotically degenerate spin-orbit states.  相似文献   

20.
This paper takes a CMMSE 2107 proceedings paper about “Highest Monomiality Based Probabilistic Evolution Theory (PREVTH)” as starting point. The focus is again set of ODEs but, this time, not on function unknowns. Instead, we deal with the temporally evolving operators, quantum mechanics’ Heisenberg picture entities we call evolvers. Our work here uses the degree changing possibilities in Kronecker powers of vectors by using so-called constancy adding space extension. Beyond the degree escalation, vanishing expression addition is also used to introduce certain arbitrary parameters and therefore to increase the flexibility in the single monomial coefficient matrix. These two issues have been deeply investigated to learn how to get single monomiality in highest degree additive term. So, the PREVTH previous-to-this paper, somehow arrested by the conicality, has now been emancipated to single monomiality which is certainly much more relaxed than before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号