首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have studied the optical matching layers (OMLs) and external quantum efficiency in the evanescent coupling photodiodes (ECPDs) integrating a diluted waveguide as a fibre-to-waveguide coupler, by using the semi-vectorial beam propagation method (BPM). The physical basis of OML has been identified, thereby a general designing rule of OML is developed in such a kind of photodiode. In addition, the external quantum efficiency and the polarization sensitivity versus the absorption and coupling length are analysed. With an optical matching layer, the absorption medium with a length of 30μm could absorb 90% of the incident light at 1.55μm wavelength, thus the total absorption increases more than 7 times over that of the photodiode without any optical matching layer.  相似文献   

2.
In this paper, we have demonstrated a high performance waveguide photodiode integrated diluted waveguide serving as a fibre-to-waveguide coupler to achieve high coupling efficiency. High responsivity (> 1 A/W), high saturation power (> 45 mA) in the static state and extremely low dark current density (0.04 pA/μm2) with 3 dB bandwidth at 13.4 GHz have been achieved.  相似文献   

3.
Recent developments in high-speed photodetectors show a trend toward high efficiency and high output voltage. The waveguide photodiode is a powerful tool for achieving both the objectives – it has a bandwidth of more than 100GHz and an efficiency of 50%. The recently developed uni-traveling-carrier structure has boosted the output voltage of the waveguide photodiode up to 1.3V, which is high enough for directly operating a digital circuit. Another trend is toward reducing the receiver cost. As opto-electronics-integrated-circuit technology based on the waveguide photodiode becomes mature and its speed reaches the 40-GHz region, it will play an important role in constructing future high-speed systems at low cost.  相似文献   

4.
Using numerically simulated results, we show that an efficient laser-to-optical fibre coupling is possible by incorporating a uniform spot size converter (SSC) based on diluted waveguides with low contrast index waveguide. We propose photonic devices and circuits composed of a laser coupled through a SSC to a one and more microdisks, which are coupled to an optical fibre. Using the finite-difference time-domain (FDTD) method, we simulate the propagation characteristics of light in the fundamental elements as the pulse propagates down the whole structure. Also by the use of the FDTD method, we model and predict the geometrical parameters used for the design of the different types of the proposed devices. It is shown that the coupling efficiency is less than 10% without the diluted waveguide, but the SSC couplers have over 73% power transmission. The gap width between the microdisks, coupling between the laser and the sequence of microdisks is investigated. We report the microdisk effect on the coupling efficiency between the laser-SSC structure and the optical fibre.  相似文献   

5.
GaInAs/AlGaAs comprehensive-strained three-quantum-well lasers with asymmetric waveguide are designed and optimized. With this design, the optical field in the transverse direction is extended, and a semiconductor laser with large spot is obtained. For a 300-μm cavity length and 100-μm aperture device under continuous wave (CW) operation, the measured vertical and horizontal far-field divergence angles are 12.2° and 3.0°, respectively. The slope efficiency is 0.44 W/A and the lasing wavelength is 917 nm.The equivalent transverse spot size is 3 μm for the fundamental transverse mode, which is a sufficiently large value for the purpose of coupling and manipulation of light.  相似文献   

6.
波导与探测器吸收层垂直耦合结构中的光学耦合分析   总被引:1,自引:0,他引:1  
李娜  李国正 《光学学报》1998,18(9):224-1227
利用几何学理论分析了波导与探测器吸收层之间的光学传播情况,以硅基波导与GeSi/Si多量子阱PIN探测器吸收层主分析对象,说明光学耦合效率与两层介质的折射率分布及吸收层长度的关系。  相似文献   

7.
We use the selective area growth(SAG) technique to monolithically integrate In P-based 4-channel arrayed waveguide gratings(AWGs) with uni-traveling carrier photodiode arrays at the O-band. Two kinds of channel spacing demultiplexers of 20 nm and 800 GHz are adopted for potential 100 Gbps coarse wavelength division multiplexing and local area network wavelength division multiplexing systems, with an evanescent coupling plan to facilitate the SAG technique into device fabrication. The monolithic chips in both channel spacings exhibit uniform bandwidths over 25 GHz and a photodiode responsivity of 0.81 A/W for each channel, in agreement with the simulated quantum efficiency of 80%. Cross talk levels are below-20 d B for both channel spacing chips.  相似文献   

8.
Sun L  Hesselink L 《Optics letters》2006,31(24):3606-3608
We present a design of a linear optical waveguide that utilizes a C-shaped metallic nano-aperture that efficiently transports light while maintaining a spot size of lambda/10. The performance of a C-aperture waveguide is superior to both a regular ridge waveguide and other surface plasmon based metal nano-optical waveguides. The energy transport mechanisms are explained by the coupling of an aperture surface resonance and the thickness resonances inside the guide channel. Finite-difference time-domain simulations of gold C-aperture waveguides are performed for a 1.5 microm wavelength incident plane wave. The 1/e decay length in power transmission is predicted to be approximately 2.5 microm. The total power throughput is 1.66 for the 2.55 microm long guide, with an intensity 6 times that of the incident wave at a distance 120 nm from the exit plane, having a spot size of 150 nm.  相似文献   

9.
This paper presents the design, simulation and experimental results of an integrated proximity sensor manufactured on silicon substrate. The sensor was designed for microrobotic applications like integration into a microgripper arm or detection of the position of gripper arms relative to an object. The structure is based on an SU8 polymeric optical waveguide splitted into three arms, integrated with a multielement photodetector on silicon substrate. Each element of the photodetector is a metal-semiconductor-metal (MSM) photodiode with Ti/Al Schottky interdigitated electrodes.The operation principle of this sensor consists in the light coupling in the central arm of the optical waveguide, interaction with the object (reflection) of the radiation which exits from this principal arm, the coupling of the “affected” radiation which comes back through the end of the waveguide and its splitting into three arms of the optical waveguide. From the optical waveguide, the light is coupled in photodiode and the photogenerated carriers are collected to the electrodes giving the electrical signal which is read and processed in real time.The optimal parameters of the waveguide (width, thicknesses of the core and the claddings) of the photodetector and the coupling between them were defined by simulation, using FDTD and BeamProp method (Opti FDTD software). Our microsensor can detect the position of an object in the range of 0-300 μm, as position sensor and with high precision in the range of zero to twice the wavelength, as proximity sensor.  相似文献   

10.
Stratified waveguide grating coupler for normal fiber incidence   总被引:1,自引:0,他引:1  
We propose a new stratified waveguide grating coupler (SWGC) to couple light from a fiber at normal incidence into a planar waveguide. SWGCs are designed to operate in the strong coupling regime without intermediate optics between the fiber and the waveguide. Two-dimensional finite-difference time-domain simulation in conjunction with microgenetic algorithm optimization shows that approximately 72% coupling efficiency is possible for fiber (core size of 8.3 microm and delta=0.36%) to slab waveguide (1.2-microm core and delta=3.1%) coupling. We show that the phase-matching and Bragg conditions are simultaneously satisfied through the fundamental leaky mode.  相似文献   

11.
Lu Z 《Optics letters》2007,32(19):2861-2863
A fiber-to-waveguide coupler is proposed to efficiently couple light from a single-mode fiber into a submicrometer semiconductor waveguide for integration with optoelectronic circuits. A microring with a specific refractive index is designed on the top of the semiconductor waveguide. The gradual vertical leakage from the microring forms steady coupling into the semiconductor waveguide. Coupling efficiency up to 93% is demonstrated using the three-dimensional finite-difference time-domain method. A tapered-waveguide or microring structure can be used to convert the lateral-mode size for coupling light into a single-mode semiconductor waveguide.  相似文献   

12.
吕倩倩  潘盼  叶焓  尹冬冬  王玉冰  杨晓红  韩勤 《中国物理 B》2016,25(3):38505-038505
We have provided optical simulations of the evanescently coupled waveguide photodiodes integrated with a 13-channels AWGs. The photodiode could exhibit high internal efficiency by appropriate choice of layers geometry and refractive index. Aseamless joint structure has been designed and fabricated for integrating the output waveguides of AWGs with the evanescently coupled waveguide photodiode array. The highest simulation quantum efficiency could achieve 92% when the matching layer thickness of the PD is 120 nm and the insertion length is 2 μm. The fabricated PD with 320-nm-thick matching layer and 2-μm-length insertion matching layer present a responsivity of 0.87 A/W.  相似文献   

13.
Maximising the optical power collected in a waveguide from the diffracting field of a semiconductor laser is desirable in optical fibre communication systems. However, the spot size and phase front curvature of the laser field usually makes a poor overlap with the mode of the receiving waveguide. Various proposals have been made to improve this coupling. This paper presents the design of a tapered waveguide section, having the correct geometry and refractive index profile, to efficiently capture and transform the rapidly diffracting light from a semiconductor laser to a planar wavefront in a straight waveguide. Experimentally, such an approach requires the refining of available techniques (UV exposure, ion implantation or diffusion) to obtain the required grading of the refractive index profile within the tapered input section of the receiving waveguide.  相似文献   

14.
The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.  相似文献   

15.
叶焓  韩勤  吕倩倩  潘盼  安俊明  王玉冰  刘荣瑞  侯丽丽 《物理学报》2017,66(15):158502-158502
选区外延技术是实现有源与无源光器件单片集成的一种有效的工艺手段,但同时对两种器件在异质生长界面处的对接结构提出了更高的设计要求.本文通过选区外延技术实现了InP基O波段4通道阵列波导光栅与单载流子探测器的单片集成.通过光学仿真重点研究了选区外延后界面处形貌对无源波导结构与有源光探测器间光耦合效率的影响,包括伸长的光学匹配层、二次外延生长边界位置、波导刻蚀边界位置等因素.研究结果表明,在保证二次外延生长边界对准异质对接界面时,将光学匹配层伸出探测器前端10μm并与外延边界无缝对接既可以保证高效的光传输效率(或探测器量子效率),又可以避免外延界面处的异常生长对器件制备工艺的影响,保证生长工艺与器件制备工艺的兼容性.成功制备的单片集成芯片具有高达76%的探测器量子效率,证明了对接方案的有效性.同时,集成芯片的低串扰(-22 dB)与解复用特性展示出其作为解复用光接收芯片具有巨大潜力.  相似文献   

16.
设计了一种基于LiNbO_3的长周期波导光栅可调谐耦合器.该耦合器利用长周期光栅的独有特性将输入波导的导模经包层模耦合至输出波导导模.由于LiNbO_3的电光效应,波导光栅芯层与包层的有效折射率随外加电压变化,从而耦合器的谐振波长及耦合效率可由外加电压调谐.分析了光栅周期与耦合器的长度对耦合器带宽和耦合效率调谐范围的影响,以及波导尺寸对谐振波长调谐灵敏度的影响.结果表明光栅周期越短,耦合器长度越长,则耦合器的带宽越窄,耦合效率调谐范围也越大.此外,谐振波长调谐灵敏度随波导宽度的增加而减小,而波导厚度对谐振波长调谐灵敏度的影响可以忽略.对光栅周期为94μm、长度为3.52cm的耦合器进行仿真,结果表明,谐振波长灵敏度为26.2pm/V,3dB带宽可达4.5nm,当外加电压从0变化到200V时,谐振波长变化5.24nm,耦合效率可在1到0.15之间进行调谐.  相似文献   

17.
Jechow A  Schedel M  Stry S  Sacher J  Menzel R 《Optics letters》2007,32(20):3035-3037
A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.  相似文献   

18.
For the realization of optoelectronic integrated circuits, it is required to incident light perpendicularly to a planar Si photodiode. We propose a high-efficient vertical optical coupler using an amorphous Si optical waveguide grating coupler with top reflector, which is transparent at 850 nm wavelength range. The optical waveguide (width of 300 nm $\times $ height of 100 nm) coupler is analyzed by using finite element method. The coupling efficiency of 80 % is calculated at the grating period of 380 nm, the duty ratio of 0.75 and the depth of 35–65 nm with top metal reflector.  相似文献   

19.
Wavelength demultiplexing waveguide couplers have important applications in integrated nanophotonic devices. Two of the most important indicators of the quality of a wavelength demultiplexing coupler are coupling efficiency and splitting ratio. In this study, we utilize two asymmetric high-index dielectric nanoantennas directly positioned on top of a silicon-on insulator waveguide to realize a compact wavelength demultiplexing coupler in a communication band, which is based on the interference of the waveguide modes coupled by the two nanoantennas. We add a Au substrate for further increasing the coupling efficiency. This has constructive and destructive influences on the antenna's in-coupling efficiency owing to the Fabry-Perot(FP) resonance in the SiO_2 layer. Therefore, we can realize a wavelength demultiplexing coupler with compact size and high coupling efficiency. This coupler has widespread applications in the areas of wavelength filters,on-chip signal processing, and integrated nanophotonic circuits.  相似文献   

20.
Doerr CR  Buhl LL 《Optics letters》2011,36(7):1209-1211
We show a planar optical circuit design that takes light from an input waveguide and creates a focused azimuthally or radially polarized beam emanating from the surface of the substrate. It is implemented in silicon-on-insulator waveguides and does not require any external components to focus the beam. The focal spot size can be subwavelength and is potentially useful for lithography, imaging, optical data storage, optical trapping, optical excitation of molecules, or coupling to optical fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号