首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The SrS:Ce/ZnS:Mn phosphor blends with various combination viz 75:25, 50:50 and 25:75 were assign to generate the white-light emission using near-UV and blue-light emitting diodes (LED) as an excitation source. The SrS:Ce exhibits strong absorption at 427 nm and the corresponding intense emission occurs at 480 and 540 nm due to electron transition from 5d(2D)−4f(2F5/2, 7/2) of Ce3+ ion as a result of spin-orbit coupling. The ZnS:Mn excited under same wavelength shows broad emission band with λmax=582 nm originates due to 3d (4G−6S) level of Mn2+. Photoluminescence studies of phosphor blend excited using near-UV to blue light confirms the emitted radiation varies from cool to warm white light in the range 430-600 nm, applicable to LED lightings. The CIE chromaticity coordinate values measured using SrS:Ce/ZnS:Mn phosphor blend-coated 430 nm LED pumped phosphors in the ratio 75:25, 50:50 and 25:75 are found to be (0.235, 0.125), (0.280, 0.190) and (0.285, 0.250), respectively.  相似文献   

2.
ZnS:Cu,Mn phosphors were prepared by conventional solid state reaction with the aid of NaCl-MgCl2 flux at 900 °C. The samples were characterized by X-ray powder diffraction, UV-vis absorbance spectra and photoluminescence spectra. All samples possess cubic structure. Cu has a much stronger effect on the absorption property of ZnS than Mn. Incorporation of Mn into ZnS host only slightly enhances the light absorption, while addition of Cu remarkably increases the ability of absorption due to ground state Cu+ absorption. The emission spectra of the ZnS:Cu,Mn phosphors consist of three bands centered at about 452, 520 and 580 nm, respectively. Introduction of Mn significantly quenches the green luminescence of ZnS:Cu. The excitation energy absorbed by Cu is efficiently transferred to Mn activators non-radiatively and the Mn luminescence can be sensitized by Cu behaving as a sensitizer (energy donor).  相似文献   

3.
A novel blue light-emitting phosphor, Eu2+-doped magnesium strontium aluminate (MgSrAl10O17:Eu2+), for plasma display panel (PDP) application was developed. X-ray diffraction (XRD) patterns disclosed that the phosphor annealed at 1500 °C for 5 h was a pure MgSrAl10O17 phase. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was less than 3 μm. The phosphor shows strong and broad blue emission under vacuum ultraviolet (VUV) light excitation. After baking at 400-600 °C and irradiation with VUV light for 300 h, the phosphor still keep excellent VUV luminescence properties exhibiting good stability against high temperature baking and VUV irradiation. The decay time was short as 1.09 μs and the quantum yield was high to 0.77±0.02. All the characteristics indicated that MgSrAl10O17:Eu2+ would be a promising blue phosphor for PDP application.  相似文献   

4.
ZnS and SiO2-ZnS nanophosphors, with or without different concentration of Mn2+ activator ions, were synthesized by using a sol-gel method. Dried gels were annealed at 600 °C for 2 h. Structure, morphology and particle sizes of the samples were determined by using X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The diffraction peaks associated with the zincblende and the wurtzite structures of ZnS were detected from as prepared ZnS powders and additional diffraction peaks associated with ZnO were detected from the annealed powders. The particle sizes of the ZnS powders were shown to increase from 3 to 50 nm when the powders were annealed at 600 °C. An UV-Vis spectrophotometer and a 325 nm He-Cd laser were used to investigate luminescent properties of the samples in air at room temperature. The bandgap of ZnS nanoparticles estimated from the UV-Vis data was 4.1 eV. Enhanced orange photoluminescence (PL) associated with 4T16A1 transitions of Mn2+ was observed from as prepared ZnS:Mn2+and SiO2-ZnS:Mn2+ powders at 600 nm when the concentration of Mn2+ was varied from 2-20 mol%. This emission was suppressed when the powders were annealed at 600 °C resulting in two emission peaks at 450 and 560 nm, which can be ascribed to defects emission in SiO2 and ZnO respectively. The mechanism of light emission from Mn2+, the effect of varying the concentration on the PL intensity, and the effect of annealing are discussed.  相似文献   

5.
A new blue-emitting phosphor, Sr1−xPbxZnO2, was prepared by a novel adipic acid templated sol-gel route. Photoluminescence and crystalline properties were investigated as functions of calcination temperatures and the Pb2+ doping levels. It was found that under UV excitation with a wavelength of 283 or 317 nm, the phosphors gave emission from 374 to 615 nm with a peak centered at 451 nm. This broad-band was composed of UV and the visible range was attributed to an impurity-trapped exciton-type emission. The maximum emission intensity of the Sr1−xPbxZnO2 phosphors occurred at a Pb concentration of x=0.01. The decay time was observed to be ∼33 ms for the compound doped with 1 mol% Pb prepared at 1000 °C. Diffuse reflectance spectra revealed the characteristic absorption peaks and the bandgap energy of SrZnO2 was found to be 3.4 eV. SEM analysis indicated that phosphor particles have an irregularly rounded morphology and the average particle size was found to be approximately 1 μm.  相似文献   

6.
X3MgSi2O8: Eu2+, Mn2+ (X=Ba, Sr, Ca) phosphors with the mean particle size of 200 nm and the spherical shape are synthesized through combustion method. They show three emission colors under near-ultraviolet light: the blue and green colors from Eu2+ ions and the red color from Mn2+ ions. Three emission bands show the different emission colors with changing X2+ cations. These color shifts are discussed in terms of two competing factors of the crystal field strength and the covalency. These phosphors with maximum excitation of around 375 nm can be applied as color-tunable phosphors for white-light-emitting diode based on ultraviolet/phosphor technology.  相似文献   

7.
A phosphor Tb3+-doped ZnWO4 (ZWO:Tb) phosphors were prepared by a hydrothermal method. X-ray powder diffraction (XRD) analysis revealed that the as-obtained sample is pure ZnWO4 phase. The excitation and emission spectra indicated that the phosphor could be well excited by ultraviolet light (272 nm) and emit blue light at about 491 nm and green light at about 545 nm. Significant energy transfer from WO42− groups to Tb3+ ions has been observed. Two approaches to charge compensation are investigated: (a) 2Zn2+ = Tb3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Zn2+ = 2Tb3+ + vacancy. Compared with two charge compensation patterns in the ZnWO4:Tb3+, it has been found that ZnWO4:Tb3+ phosphors used Li+ as charge compensation show greatly enhanced bluish-green emission under 272 nm excitation.  相似文献   

8.
Monodispersed spherical ZnS particles as well as doped with Cu, Mn ions were synthesized from metal-chelate solutions of ethylenediamine tetraacetate (EDTA) and thioacetamide (TAA). The characterizations of the ZnS-based particles were investigated via TEM, SEM, XRD, TG/DTA and PL measurements. The sphere size was controlled from 50 nm to 1 μm by adjusting the nucleation temperatures and molar ratio of Zn-EDTA to TAA. The emission intensity continuously increased with the increase of the particle size. When the ZnS microspheres were annealed at 550-800 °C, there were two specific emission bands with the centers at 454 nm and 510 nm, which were associated with the trapped luminescence arising from the surface states and the stoichiometric vacancies, respectively. When Cu2+ was introduced into ZnS microspheres, the dominant emission was red-shifted from 454 to 508 nm, fluorescence intensity also sharply increased. However, for the Mn2+-doped ZnS, the emission intensity was significantly enhanced without the shift of emission site.  相似文献   

9.
《Current Applied Physics》2010,10(3):889-892
Carbon nanotube (CNT) field emitter was fabricated, and then its emission stability was evaluated with three different anode structures; indium tin oxide (ITO)/glass, ZnS:Cu,Al(green phosphor)/ITO/glass, and Al/ZnS:Cu,Al/ITO/glass. It was found that the electron emission from CNTs to the phosphor layer degrades much faster than the emission to ITO layer does. The current decay time from 100 μA/cm2 to 50 μA/cm2 for ITO/glass and ZnS:Cu,Al/ITO/glass were 250 h and 20 h, respectively. Such rapid decay in emission current with the phosphor-coated anode was found to be attributed to the formation of Zn particles on CNTs during the field emission. However, the deposition of aluminum layer on the phosphor, in other words, using the anode structure of Al/ZnS:Cu,Al/ITO/glass recovered the stability that is comparable to that with an ITO/glass. The aluminum layer was found to efficiently prevent phosphor elements from being degassed, preserving the long-term emission stability of carbon nanotubes.  相似文献   

10.
Three different gases (nitrogen (N2), oxygen (O2) and argon (Ar)) were used as background gases during the growth of pulsed laser deposition (PLD) Y2SiO5:Ce thin films. A Krypton fluoride laser (KrF), 248 nm was used for the PLD of the films on silicon (Si) (1 0 0) substrates. The effect of the background gases on the surface morphology, crystal growth and luminescent properties were investigated. All the experimental parameters, the gas pressure (455 mT), the substrate temperature (600 °C), the pulse frequency (8 Hz), the number of pulses (4000) and the laser fluence (1.6±0.2) J/cm2 were kept constant. The only parameter that was changed during the deposition was the ambient gas species. The surface morphology and average particle sizes were monitored with scanning electron microscopy (SEM) and atomic force microscopy (AFM). X-ray diffraction (XRD) and Auger electron spectroscopy (AES) were used to determine the crystal structure and composition, respectively. Cathodo- (CL) and photoluminescence (PL) were used to measure the luminescent intensities for the different phosphor thin films. The nature of the particles, ablated on the substrate, is related to the collisions between the ejected particles and the ambient gas particles. The CL and PL intensities also depend on the particle sizes. A 144 h (coulomb dose of 1.4×104 C cm−2) electron degradation study on the thin films ablated in the Ar gas environment resulted in a decrease in the main CL intensity peak at 440 nm and to the development of a new very broad luminescent peak spectra ranging from 400 to 850 nm due to the growth of a SiO2 layer on the surface.  相似文献   

11.
Sodium europium double tungstate [NaEu(WO4)2] phosphor was prepared by the solid-state reaction method. Its crystal structure, photoluminescence properties and thermal quenching characteristics were investigated aiming at the potential application in the field of white light-emitting diodes (LEDs). The influences of Sm doping on the photoluminescence properties of this phosphor were also studied. It is found that this phosphor can be effectively excited by 394 or 464 nm light, which nicely match the output wavelengths of near-ultraviolet (UV) or blue LED chips. Under 394 or 464 nm light excitation, this phosphor exhibits stronger emission intensity than the Y2O2S:Eu3+ or Eu2+-activated sulfide phosphor. The introduction of Sm3+ ions can broaden the excitation peaks at 394 and 464 nm of the NaEu(WO4)2 phosphor and significantly enhance its relative luminance under 400 and 460 nm LEDs excitation. Furthermore, the relative luminance of NaEu(WO4)2 phosphor shows a superior thermal stability compared with the commercially used sulfide or oxysulfide phosphor, and make it a promising red phosphor for solid-state lighting devices based on near-UV or blue LED chips.  相似文献   

12.
A new phosphor, CaZnGe2O6:Mn2+, which emits red long-lasting phosphorescence centered at 648 nm upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated in this paper. XRD, photoluminescence, thermoluminescence spectra and afterglow decay curve are used to characterize the synthesized phosphor. This phosphor is well crystallized by calcination at 1150 °C for 3 h and possesses excellent performance. The color coordinate values of this phosphor are x=0.64, y=0.26 under 250 nm UV light excitation. Under 250-nm UV light irradiation, this phosphor shows obvious long-lasting phosphorescence that can be seen with the naked eye in the dark clearly after the irradiation source has been removed for more than 3 h. The possible mechanism of this red-light-emitting long-afterglow phosphor is also investigated based on the experiment results.  相似文献   

13.
In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 °C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu2+-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu2+ ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu2+ ions in the ZnS nanoparticles as expected.  相似文献   

14.
A Cu(I) complex, [Cu(Dppp)(DPEphos)]BF4 (Dppp=2,3-diphenyl-pyrazino[2,3-f][1,10]phenanthroline, DPEphos=Bis[2-(diphenylphosphino)phenyl]ether), is synthesized and used as the dopant in bright electrophosphorescent devices with the general structure ITO/m-MTDATA (30 nm)/NPB (20 nm)/CBP: ×wt% [Cu(Dppp)(DPEphos)]BF4 (30 nm)/Bphen (20 nm)/Alq3 (20 nm)/LiF (0.8 nm)/ Al (200 nm). These devices exhibit a maximum brightness of 4483 cd/m2 and a peak efficiency of 3.4 cd/A. Compared with previously reported similar devices based on Cu(I) complexes, the brightness of the devices presented in this article is the best. Meanwhile, 2% [Cu(Dppp)(DPEphos)]BF4-based devices exhibit white light-emitting properties with CIE coordinates of (0.32. 0.35) at 10 V.  相似文献   

15.
A novel blue-emitting long-lasting phosphor Sr3Al10SiO20:Eu2+,Ho3+ is prepared by the conventional high-temperature solid-state technique and their luminescent properties are investigated. XRD, photoluminescence (PL) and thermoluminescence (TL) are used to characterize the synthesized phosphors. These phosphors are well crystallized by calcinations at 1500-1600 °C for 3 h. The phosphor emits blue light and shows long-lasting phosphorescence after it is excited with 254/365 nm ultraviolet light. TL curves reveal the introduction of Ho3+ ions into the Sr3Al10SiO20:Eu2+ host produces a highly dense trap level at appropriate depth, which is the origin of the long-lasting phosphorescence in this kind of material. The long-lasting phosphorescence lasts for nearly 6 h in the light perception of the dark-adapted human eye (0.32 mcd/m2). All the results indicate that this phosphor has promising potential practical applications.  相似文献   

16.
A colloidal suspension of ZnS:Mn nanocrystals was prepared in sodium bis(2-ethylhexyl)suflosuccinate reverse micelles, and then modified by surfactants with phosphate or carboxyl groups. The photoluminescent intensity at 580 nm due to d-d transition of Mn2+ ions increases up to a factor of 6.3 and its quantum efficiency increases from 1.7% to 8.1% after modification. According to 31P nuclear magnetic resonance spectra, surfactants with phosphate groups adsorb on the surface of ZnS nanocrystal and 31P nucleus spins are relaxed rapidly by interaction with five unpaired 3d electrons of Mn2+, showing that phosphate groups are located in the vicinity of Mn2+. The excitation spectra for the emission due to phosphate or carboxyl groups are similar to those for the emission at 580 nm corresponding to the excitation of ZnS. Both excitation spectra shift in parallel with increasing the amount of surfactant to show the linear relationship. We, therefore, attribute the increase in quantum efficiency at 580 nm to additional energy transfer of ZnS→functional groups→Mn2+ as well as to the reduction of energy loss due to non-radiative transition by surface modification.  相似文献   

17.
Mg2SnO4, which has an inverse spinel structure, was adopted as the host material of a new green emitting phosphor. Luminescence properties of the manganese-doped magnesium tin oxide prepared by the solid state reaction were investigated under vacuum ultraviolet (VUV) ray and low-voltage electron excitation. The Mg2SnO4:Mn phosphor exhibited green luminescence with the emission spectrum centered at 500 nm due to spin flip transition of the d-orbital electron associated with the Mn2+ ion. Optimum Mn concentration of Mg2SnO4:Mn under VUV excitation with 147 nm wavelength and electron beam excitation with 800 V excitation voltage are 0.25 and 0.6 mol%, respectively. The emission intensities of Mg2SnO4:Mn phosphors under the two excitation sources are higher than those of Zn2SiO4:Mn and ZnGa2O4:Mn phosphors. At 0.25 mol% of Mn concentration, on the other hand, the decay time is shorter than 10 ms.  相似文献   

18.
Nanocrystalline PbWO4 phosphor powders, which have scheelite structure, were successfully synthesized at low temperatures via a modified citrate complex route assisted by microwave irradiation. Crystallization of the PbWO4 precursor were detected at 400 °C, and entirely completed at 500 °C. Prepared PbWO4 nanocrystallites showed primarily spherical and disperse morphology. The average crystallite sizes were between 18 and 29 nm, showing an ordinary tendency to increase with temperature. The nanocrytalline PbWO4 phosphor powders exhibited spread-eagle shape of blue luminescence. Especially the PbWO4 phosphor powders prepared at 600 °C showed the strongest luminescent intensity, which was due to the higher crystallinity and homogeneous particle morphology.  相似文献   

19.
Nanometer-scale Al particles are fabricated and are embedded in a GaAs matrix using molecular beam epitaxial technique. The Al particle is self-assembled on GaAs by supplying an Al molecular beam. The average particle size is found to be 25 nm. The density is 7 × 1010 cm−2 when Al of 6.2 × 1015 atoms/cm2 is supplied on (1 0 0)GaAs at a substrate temperature of 300 °C. Clear hysteresis and plateaus in capacitance-voltage (C-V) curves are found in an Al-embedded sample, whereas monotonic increase of capacitance is obtained in a reference sample having an AlAs layer instead of Al. This difference results from trapping of electrons by the Al particles, suggesting that the particles have metallic character.  相似文献   

20.
Nanosized ZnGa2O4:Cr3+ powder is synthesized through hydrothermal method. The average particle size is 20 nm and they are spherical in shape. The excitation band from the charge transfer between Cr3+-O2− shows a blueshift behavior due to quantum confinement effect. X-ray diffraction pattern, Fourier transform-infrared spectrum, and electron paramagnetic resonance signal indicate that nanosized ZnGa2O4:Cr3+ phosphor shows many defect-related energy states and heavy lattice distortion in comparison with bulk ZnGa2O4:Cr3+ phosphor. Many defect states result in more nonradiative loss and shorter decay time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号