首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Out-of-center "primary" electronic distortions are inherent to the oxide fluoride anions of the early d0 transition metals. In the [NbOF5]2- anion, the Nb5+ moves from the center of the octahedron toward the oxide ligand to form a short Nb=O bond and long trans Nb-F bond. The combined results of single-crystal X-ray diffraction and electronic structure calculations indicate that the primary distortion of the [NbOF5]2- anion is affected by the coordination environment that is created by the three-dimensional extended structure. The formation of bonds between an M(L)4(2+) (M = Cd2+, Cu2+; L = 3-aminopyridine, 4-aminopyridine) cation and the oxide and/or trans-fluoride ligands of the [NbOF5]2- anion weakens the pi component of the Nb=O bond. At the same time, hydrogen bond interactions between the equatorial fluorides and the aminopyridine groups both lengthen the equatorial Nb-F bonds and can further reduce the symmetry of the [NbOF5]2- anion. These combined three-dimensional bond network interactions that serve to lengthen the Nb=O bond and thereby decrease the primary distortion of the [NbOF5]2- anion are illustrated in the structures of three new niobium oxide fluoride phases, [4-apyH]2[Cu(4-apy)4(NbOF5)2] (4-apy = 4-aminopyridine), Cd(3-apy)4NbOF5 (3-apy = 3-aminopyridine), and Cu(3-apy)4NbOF5, that were synthesized and characterized using X-ray diffraction. Crystal data for [4-apyH]2[Cu(4-apy)4(NbOF5)2]: tetragonal, space group /4(1)/ acd (No. 142), with a = 20.8745(8) A, c = 17.2929(9) A, and Z= 8. Cd(3-apy)4NbOF5: tetragonal, space group P4(3) (No. 78), with a = 8.4034(4) A, c = 34.933(3) A, and Z = 4. Cu(3-apy)4NbOF5: monoclinic, space group P2(1)/n (No. 14), with a = 8.822(1) A, b = 16.385(3) A, c = 8.902(1) A, beta = 109.270(3) degrees, and Z = 2.  相似文献   

2.
Guo M  Yu J  Li J  Li Y  Xu R 《Inorganic chemistry》2006,45(8):3281-3286
The first two low-dimensional beryllium phosphates, [C5H14N2]2[Be3(HPO4)5].H2O (BePO-CJ29) and [C6H18N2]0.5[Be2(PO4)(HPO4)OH].0.5 H2O (BePO-CJ30), have been successfully synthesized under mild hydrothermal/solvothermal conditions. BePO-CJ29 is built up from strict alternation of BeO4 and HPO4 tetrahedra forming a unique one-dimensional double chains with 12-ring apertures. There are pseudo-10-ring apertures enclosed by two double chains through H-bonds. BePO-CJ29 can also be viewed as a pseudo 2-D layered structure stabilized by strong H-bonds. The diprotonated 2-methylpiperazium cations are located at three positions (i.e., inside the 12-ring aperture, inside the pseudo-10-ring aperture, and in the interlayer of the inorganic pseudo-layers. BePO-CJ30 is constructed by the alternation of Be-centered tetrahedra (including BeO4 and HBeO4) and P-centered tetrahedra (including PO4 and HPO4) resulting in a two-dimensional layered structure parallel to the (0 1 1) direction. The complex layer is composed of coupled 4.8 net sheets. The diprotonated 1,6-hexandiamine cations and water molecules reside in the interlayer regions and interact with the inorganic layers through H-bonds. Crystal data are as follows: [C5H14N2]2[Be3(HPO4)5].H2O (BePO-CJ29), triclinic, P1 (No. 2), a = 8.1000(9) A, b = 8.4841(14) A, c = 19.665(2) A, alpha = 89.683(10) degrees, beta = 78.182(8) degrees, gamma = 87.932(9) degrees, V = 1321.9(3) A3, Z = 2, R1 = 0.0523 (I > 2sigma(I)), and wR2 = 0.1643 (all data); [C6H18N2]0.5[Be2(PO4)(HPO4)OH].0.5 H2O (BePO-CJ30), orthorhombic, Pccn (No. 56), a = 26.01(4) A, b = 8.431(12) A, c = 9.598(13) A, V = 2105(5) A3, Z = 8, R1 = 0.0833 (I > 2sigma(I)), and wR2 = 0.2278 (all data).  相似文献   

3.
Two new phosphates, Bi(4.25)(PO4)2O(3.375) and Bi(5)(PO(4))(2)O(4.5), have been analyzed by single-crystal X-ray diffraction in the series Bi(4+x)(PO4)2O(3+3x/2) (0.175 < or = x < or = 1). The syntheses of the compositions ranging from x = 0.175 to 0.475 were carried out by the ceramic route. The compositions from x = 0.175 to 0.475 form a solid solution with a structure similar to that of Bi(4.25)(PO4)2O(3.375), while Bi(5)(PO4)2O(4.5) was isolated from a mixture of two phases. Both of the phases form fluorite-related structures but, nevertheless, differ from each other with respect to the arrangement of the bismuth atoms. The uniqueness in the structures is the appearance of isolated PO(4) tetrahedra separated by interleaving [Bi2O2] units. ac impedance studies indicate conductivity on the order of 10(-5) S cm(-1) for Bi(4.25)(PO4)2O(3.375). Crystal data: Bi(4.25)(PO4)2O(3.375), triclinic, space group P (No. 1), with a = 7.047(1) A, b = 9.863(2) A, c = 15.365(4) A, alpha = 77.604(4) degrees, beta = 84.556(4) degrees, gamma = 70.152(4) degrees, V = 980.90(4) A3, and Z = 4; Bi(5)(PO4)2O(4.5), monoclinic, space group C2/c (No. 15), with a = 13.093(1) A, b = 5.707(1) A, c = 15.293(1) A, beta = 98.240(2) degrees, V = 1130.95(4) A(3), and Z = 8.  相似文献   

4.
The new compounds Li(2-x)Na(x)Ni[PO(4)]F (x = 0.7, 1, and 2) have been synthesized by a solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data. Li(1.3)Na(0.7)Ni[PO(4)]F crystallizes with the orthorhombic Li(2)Ni[PO(4)]F structure, space group Pnma, a = 10.7874(3), b = 6.2196(5), c = 11.1780(4) ? and Z = 8, LiNaNi[PO(4)]F crystallizes with a monoclinic pseudomerohedrally twinned structure, space group P2(1)/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) ?, β = 90° and Z = 4, and Na(2)Ni[PO(4)]F crystallizes with a monoclinic twinned structure, space group P2(1)/c, a = 13.4581(8), b = 5.1991(3), c = 13.6978(16) ?, β = 120.58(1)° and Z = 8. For x = 0.7 and 1, the structures contain NiFO(3) chains made up of edge-sharing NiO(4)F(2) octahedra, whereas for x = 2 the chains are formed of dimer units (face-sharing octahedra) sharing corners. These chains are interlinked by PO(4) tetrahedra forming a 3D framework for x = 0.7 and different Ni[PO(4)]F layers for x = 1 and 2. A sodium/lithium disorder over three atomic positions is observed in Li(1.3)Na(0.7)Ni[PO(4)]F structure, whereas the alkali metal atoms are well ordered in between the layers in the LiNaNi[PO(4)]F and Na(2)Ni[PO(4)]F structures, which makes both compounds of great interest as potential positive electrodes for sodium cells.  相似文献   

5.
The 1/2V2O5-H2C2O4/H3PO4/NH4OH system was investigated using hydrothermal techniques. Four new phases, (NH4)VOPO(4).1.5H2O (1), (NH4)0.5VOPO(4).1.5H2O (2), (NH4)2[VO(H2O)3]2[VO(H2O)][VO(PO4)2]2.3H2O (3), and (NH4)2[VO(HPO4)]2(C2O4).H2O (4), have been prepared and structurally characterized. Compounds 1 and 2 have layered structures closely related to VOPO(4).2H2O and A0.5VOPO4.yH2O (A = mono- or divalent metals), whereas 3 has a 3D open-framework structure. Compound 4 has a layered structure and contains both oxalate and phosphate anions coordinated to vanadium cations. Crystal data: (NH4)VOPO(4).1.5H2O, tetragonal (I), space group I4/mmm (No. 139), a = 6.3160(5) A, c = 13.540(2) A, Z = 4; (NH4)0.5VOPO(4).1.5H2O, monoclinic, space group P2(1)/m (No. 11), a = 6.9669(6) A, b = 17.663(2) A, c = 8.9304(8) A, beta = 105.347(1) degrees, Z = 8; (NH4)2[VO(H2O)3]2[VO(H2O)][VO(PO4)2]2.3H2O, triclinic, space group P1 (No. 2), a = 10.2523(9) A, b = 12.263(1) A, c = 12.362(1) A, alpha = 69.041(2) degrees, beta = 65.653(2) degrees, gamma = 87.789(2) degrees, Z = 2; (NH4)2[VO(HPO4)]2(C2O4).5H2O, monoclinic (C), space group C2/m (No. 12), a = 17.735(2) A, b = 6.4180(6) A, c = 22.839(2) A, beta = 102.017(2) degrees, Z = 6.  相似文献   

6.
Four new layered mixed-valence vanadium oxides, which contain interlamellar organic cations, alpha-(H(3)N(CH(2))(2)NH(3))[V(4)O(10)] (1a), beta-(H(3)N(CH(2))(2)NH(3))[V(4)O(10)] (1b), alpha-(H(2)N(C(2)H(4))(2)NH(2))[V(4)O(10)] (2a), and beta-(H(2)N(C(2)H(4))(2)NH(2))[V(4)O(10)] (2b), have been prepared under hydrothermal conditions and their single-crystal structures determined: 1a, triclinic, space group P&onemacr;, a = 6.602(2) ?, b = 7.638(2) ?, c = 5.984(2) ?, alpha = 109.55(3) degrees, beta = 104.749(2) degrees, gamma = 82.31(3) degrees, Z = 1; 1b, triclinic, P&onemacr;, a = 6.387(1) ?, b = 7.456(2) ?, c = 6.244(2) ?, alpha = 99.89(2) degrees, beta = 102.91(2) degrees, gamma = 78.74(2) degrees, Z = 1; 2a, triclinic, P&onemacr;, a = 6.3958(5) ?, b = 8.182(1) ?, c = 6.3715(7) ?, alpha = 105.913(9) degrees, beta = 104.030(8) degrees, gamma = 94.495(8) degrees, Z = 1; 2b, monoclinic, space group P2(1)/n, a = 9.360(2) ?, b = 6.425(3) ?, c = 10.391(2) ?, beta = 105.83(1) degrees, Z = 2. All four of the compounds contain mixed-valence V(5+)/V(4+) vanadium oxide layers constructed from V(5+)O(4) tetrahedra and pairs of edge-sharing V(4+)O(5) square pyramids with protonated organic amines occupying the interlayer space.  相似文献   

7.
The new uranyl phosphate [(UO2)3(PO4)O(OH)(H2O)2](H2O) (1) with an unprecedented framework structure has been synthesized at 150 and 185 degrees C. The structure (tetragonal, P4(2)/mbc, a = 14.015(1) A, c = 13.083(2) A, V = 2575.6(4) A(3), Z = 8) contains uranyl phosphate chains composed of uranyl pentagonal and hexagonal bipyramids and phosphate tetrahedra linked by sharing of polyhedral edges. The uranyl phosphate chains are aligned both along [100] and [010] and are linked into a novel framework structure involving channels along [001]. Topologically identical chains occur linked into sheets in more than a dozen uranyl phosphate minerals, but these chains have never been observed in opposing orientations and linked into a framework as in 1.  相似文献   

8.
Bauer S  Müller H  Bein T  Stock N 《Inorganic chemistry》2005,44(25):9464-9470
Following the strategy of using polyfunctional phosphonic acids for the synthesis of open-framework metal phosphonates, the phosphonocarboxylic acid (H2O3PCH2)2NCH2C6H4COOH was used in the hydrothermal synthesis of new Ba phosphonates. Its decomposition led to the first open-framework barium phosphonate [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O. The synthesis was also successfully performed using iminobis(methylphosphonic acid), (H2O3PCH2)2NH, as a starting material, and the synthesis was optimized to obtain as a pure material. The reaction setup as well as the pH are the dominant parameters, and only a diffusion-controlled reaction led to the desired compound. The crystal structure was solved from single-crystal data: monoclinic; C2/c; a=2328.7(2), b=1359.95(7), and c=718.62(6) pm; beta=98.732(10) degrees ; V=2249.5(3)x10(6) pm3; Z=4; R1=0.036; and wR2=0.072 (all data). The structure of [Ba3(O3PCH2NH2CH2PO3)2(H2O)4].3H2O is built up from BaO8 and BaO10 polyhedra forming BaO chains and layers, respectively. These are connected to a three-dimensional metal-oxygen-metal framework with the iminobis(methylphosphonic acid) formally coating the inner walls of the pores. The one-dimensional pores (3.6x4 A) are filled with H2O molecules that can be thermally removed. Thermogravimetric investigations and temperature-dependent X-ray powder diffraction demonstrate the stability of the crystal structure up to 240 degrees C. The uptake of N,N-dimethylformamide and H2O by dehydrated samples is demonstrated. Furthermore, IR, Raman, and 31P magic-angle-spinning NMR data are also presented.  相似文献   

9.
A new mixed alkali/alkaline earth iron phosphate, NaBaFe4(HPO4)3.H2O, has been synthesized hydrothermally and structurally characterized by single-crystal X-ray diffraction, magnetic susceptibility, infrared spectroscopy, and thermogravimetric analysis. The title compound crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 9.287(2) A, b = 22.665(4) A, c = 8.966(3) A, beta = 91.82(2), and Z = 4. The compound has a 2-D framework structure constructed from layers, stacked along the [010] unit cell direction with Na+ and Ba2+ ions, and water molecules residing within the interlayer space. The anionic layers are composed from the assemblage of vertex shared FeO6 octahedra interconnected by PO4(3)- and HPO4(2)- tetrahedra. The layers are built from four unique FeO6 units linking through vertex shared oxygen atoms to form infinite zigzag chains that run parallel to the a axis. These chains form single layers that run infinitely in the c direction through the vertex sharing of PO4 groups.  相似文献   

10.
Two new isostructural mixed-metal phosphates, BaTeMO(4)(PO(4)) (M = Nb(5+) or Ta(5+)), have been synthesized as bulk phase powders and single crystals by standard solid-state techniques using BaCO(3), TeO(2), Nb(2)O(5) (or Ta(2)O(5)), and NH(4)H(2)PO(4) as reagents. The materials have novel layered crystal structures consisting of [M(5+)O(6/2)](-) corner-sharing octahedral chains that are connected to [Te(4+)O(4/2)](0) polyhedra and [P(5+)O(2/1)O(2/2)](-) tetrahedra. The Ba(2+) cations reside between the layers and maintain charge balance. The Te(4+) cations are in asymmetric coordination environments attributable to their lone pairs. The Nb(5+) distorts along the local C(4) direction of its octahedron resulting in a "short-long-short-long" Nb-O-Nb bond motif. The Nb(5+) cation displaces away from the oxide ligands that are bonded to Te(4+) or P(5+) cations, attributable to the structural rigidity of the TeO(4) and PO(4) polyhedra. Thus, the TeO(4) and PO(4) polyhedra support and reinforce the intraoctahedral distortion observed within the NbO(6) octahedra. Infrared and Raman spectroscopy, thermogravimetric analysis, and ion-exchange experiments are also presented. Crystal data: BaTeNbO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.7351(9) A, b = 7.5540(10) A, c = 27.455(4) A, V = 1396.8(3) A(3), and Z = 8; BaTeTaO(4)(PO(4)), orthorhombic, space group Pbca (No. 61), with a = 6.734(2) A, b = 7.565(3) A, c = 27.435(9) A, V = 1372.6(8) A(3), and Z = 8.  相似文献   

11.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

12.
Three new strontium vanadium borophosphate compounds, (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O (Sr-VBPO1) (1), (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O (Sr-VBPO2) (2), and (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4][V2P2BO12]6 10H2O (Sr-VBPO3) (3) have been synthesized by interdiffusion methods in the presence of diprotonated ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane. Compound 1 has a chain structure, whereas 2 and 3 have layered structures with different arrangements of [(NH4) [symbol: see text] [V2P2BO12]6] cluster anions within the layers. Crystal data: (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 21.552(1) A, b = 27.694(2) A, c = 20.552(1) A, beta = 113.650(1) degrees, Z = 4; (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O, monoclinic, space group I2/m (no. 12), a = 15.7618(9) A, b = 16.4821(9) A, c = 21.112(1) A, beta = 107.473(1) degrees, Z = 2; (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4] [V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 39.364(2) A, b = 14.0924(7) A, c = 25.342(1) A, beta = 121.259(1) degrees, Z = 4. The differences in the three structures arise from the different steric requirements of the amines that lead to different amine-cluster hydrogen bonds.  相似文献   

13.
Lii KH  Chen CY 《Inorganic chemistry》2000,39(15):3374-3378
The first metal phosphatooxalate containing a chiral amine, (R-C5H14N2)2[Ga4(C2O4)(H2PO4)2(PO4)4].2H2O, has been synthesized hydrothermally and characterized by single-crystal X-ray diffraction and 31P MAS NMR spectroscopy. It crystallizes in the monoclinic space group P2(1) (No. 4) with a = 8.0248(4) A, b = 25.955(1) A, c = 9.0127(5) A, beta = 100.151(1) degrees, and Z = 2. The structure consists of GaO6 octahedra and GaO4 tetrahedra connected by coordinating C2O4(2-) and phosphate anions to form anionic sheets in the ac plane with charge-compensating diprotonated R-2-methylpiperazinium cations and water molecules between the layers. There is a good correlation between the NMR spectrum and the structure.  相似文献   

14.
傅瑞标  吴新涛  胡胜民  王龙胜 《结构化学》2004,23(10):1107-1110
1 INTRODUCTION Metal organophosphonates have attracted considerable attention for over three decades due to their potential or practical applications, include- ing ion exchanges[1, 2], molecular sensors[3] and optics[4, 5]. Recently, a number of porous m…  相似文献   

15.
Wang Y  Yu J  Pan Q  Du Y  Zou Y  Xu R 《Inorganic chemistry》2004,43(2):559-565
A 0D vanadium borophosphate [Co(en)(3)](2)[V(3)P(3)BO(19)][H(2)PO(4)].4H(2)O (1) and two 1D vanadium oxides [Co(en)(3)][V(3)O(9)].H(2)O (2) and [Co(dien)(2)][V(3)O(9)].H(2)O (3) have been synthesized hydrothermally from the reaction mixture of V(2)O(5)-H(3)PO(4)-H(3)BO(3)-CoCl(2)-R-H(2)O at 110 degrees C (R: en or dien). The complex cations Co(en)(3)(3+) and Co(dien)(2)(3+) are cooperatively organized in the reaction medium to play a structure-directing role in the formation of the inorganic clusters and chains. The structures are determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The structure of 1 contains isolated [V(3)P(3)BO(19)](5)(-) cluster anions, H(2)PO(4)(-) anions, racemic Co(en)(3)(3+) cations, and H(2)O molecules, which form a complex H-bond network. 2 and 3 both contain chains of corner-sharing VO(4) tetrahedra running along the 2(1) screw axis. The complex cations located in the interchain region interact with the chains through H-bonds. 2 is crystallized in an enantiomorphic space group and only one enantiomer of Co(en)(3)(3+) is involved in the structure. Crystal data: 1, monoclinic, C2/c, a = 32.8492(14) A, b = 11.9601(3) A, c = 22.6001(7) A, beta = 108.9630(8) degrees, Z = 8; 2, orthorhombic, P2(1)2(1)2(1), a = 8.1587(16) A, b = 12.675(3) A, c = 18.046(4) A, Z = 4; 3, monoclinic, P2(1)/c, a = 16.1663(10) A, b = 8.7028(3) A, c = 13.9773(5) A, beta = 103.1340(18) degrees, Z = 4.  相似文献   

16.
Shi L  Li J  Yu J  Li Y  Ding H  Xu R 《Inorganic chemistry》2004,43(8):2703-2707
A new manganese(II)-substituted aluminophosphate, [C(6)N(2)H(14)]0.5.[MnAl(3)(PO(4))(4)(H(2)O)(2)], denoted as MnAPO-14, has been synthesized hydrothermally in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as the structure-directing agent. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The structure of MnAPO-14 is built up by MnO(4)(H(2)O)(2) octahedra, AlO(4) tetrahedra, and PO(4) tetrahedra via Al-O-P and Mn-O-P linkages. Its framework is analogous to that of aluminophosphate zeotype AFN in which 25% of the aluminum sites are replaced by Mn(II) atoms. The diprotonated DABCO cations reside in the eight-membered ring channels. Computational simulations indicate that the substitution site of Mn to Al is determined by the host-guest interaction. Crystal data: [C(6)N(2)H(14)]0.5.[MnAl(3)(PO(4))(4)(H(2)O)(2)], triclinic P1 (No. 2), a = 9.5121(4) A, b = 9.8819(3) A, c = 12.1172(4) A, alpha = 70.533(2) degrees, beta = 73.473(2) degrees, gamma = 82.328(2) degrees, Z = 2, R(1) = 0.0586 (I > 2 sigma(I)), and wR(2) = 0.1877 (all data).  相似文献   

17.
Two novel uranyl adipates are reported as synthesized via hydrothermal treatment of uranium oxynitrate and adipic acid. One-dimensional UO(2)(C(6)H(8)O(4))(H(2)O)(2) (1) [a = 9.6306(6) A, c = 11.8125(10) A, tetragonal, P4(3)2(1)2 (No. 96), Z = 4] consists of chains of (UO(2))O(4)(H(2)O)(2) hexagonal bipyramids tethered through a linear adipic acid backbone. Three-dimensional UO(2)(C(6)H(8)O(4)) (2) [a = 5.5835(12) A, b = 8.791(2) A, c = 9.2976(17) A, alpha = 87.769(9) degrees, beta = 78.957(8) degrees, gamma = 81.365(11) degrees, triclinic, P1 (No. 2), Z = 2] is produced by decreasing the hydration level of the reaction conditions. This structure contains a previously unreported [(UO(2))(2)O(8)] building unit cross-linked into a neutral metal-organic framework topology with vacant channels.  相似文献   

18.
A novel fulvene-type bidentate ligand 1 has been synthesized by an aroylation reaction of cyclohexyl-substituted cyclopentadienyl anions. Compound 1 crystallizes in the triclinic space group P(-)1, with a = 7.0419(5) A, b = 11.9360(8) A, c = 15.6470(11) A, alpha = 85.1440(10) degrees, beta = 78.1140(10) degrees, gamma = 74.5360(10) degrees, V = 1239.76(15) A(3), and Z = 2. The coordination chemistry of 1 was investigated, and a novel Ag-containing coordination polymer (2), linked by both Ag-heteroatom and Ag-carbon interactions, has been synthesized. The coordination polymer has been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. Compound 2 crystallizes in the triclinic space group P(-)1, with a = 7.1654(5) A, b = 15.7277(11) A, c = 18.8157(13) A, alpha = 73.5150(10) degrees, beta = 89.0410(10) degrees, gamma = 89.0970(10) degrees, V = 1355.19(14) A(3), and Z = 2. The solid-state structure of 2 features a one-dimensional double-chain motif. These double chains are in turn cross-linked to each other via strong interchain O-H...O hydrogen bonds, forming a novel two-dimensional network with remarkably large cavities (effective cross section of ca. 21 x 15 A) that are occupied by benzene guest molecules. Both compounds 1 and 2 are luminescent in the solid state, and a large blue-shift in the emission between the free ligand 1 and the ligand incorporated into complex 2 is observed.  相似文献   

19.
The syntheses, crystal structures, and properties of C(4)N(3)OH(7).ZnHPO(3), C(4)N(3)OH(7).Zn(H(2)O)HPO(3), and (C(4)N(3)OH(7))(2).ZnHPO(3).H(2)O are reported. These new creatinine zinc phosphites are built up from networks of vertex-sharing HPO(3) pseudopyramids and various types of ZnO(2)N(2), ZnO(3)N, and ZnO(2)N(H(2)O) tetrahedra, resulting in extended structures of different dimensionalities (as sheets, clusters, and chains, respectively). They demonstrate the structural effect of incorporating "terminal" (nonnetworking) Zn-N and Zn-OH(2) moieties into zinc centers. Crystal data: C(4)N(3)OH(7).ZnHPO(3), triclinic, P1 (No. 2), a = 8.9351(4) A, b = 9.5011(4) A, c = 9.9806(4) A, alpha = 87.451(1) degrees, beta = 85.686(1) degrees, gamma = 89.551(1) degrees, Z = 4; C(4)N(3)OH(7).Zn(H(2)O)HPO(3), monoclinic, P2(1)/c (No. 14), a = 10.1198(7) A, b = 7.2996(5) A, c = 13.7421(9) A, beta = 107.522(1) degrees, Z = 4; (C(4)N(3)OH(7))(2).ZnHPO(3).H(2)O, triclinic, P1 (No. 2), a = 10.7289(6) A, b = 10.9051(6)A, c = 13.9881(8) A, alpha = 89.508(1) degrees, beta = 74.995(1) degrees, gamma = 74.932(1) degrees, Z = 4.  相似文献   

20.
Wang M  Li JY  Yu JH  Pan QH  Song XW  Xu RR 《Inorganic chemistry》2005,44(13):4604-4607
A new layered aluminophosphate, [C6N3H17][Al2(HPO4)(PO4)2] (denoted AlPO-CJ21), has been prepared in an alcoholic system by the use of N-(2-aminoethyl)-piperazine (AEPP) as the template. Its inorganic layer containing a series of bridged six-membered rings (MRs) is a new type of 4.6-net sheet built up from AlO4, PO2(OH)(=O), and PO3(=O) tetrahedra. Interestingly, inorganic helical chains of right- or left-handedness are presented in the aluminophosphate layers, and fascinating hydrogen-bonded helices are self-assembled under solvothermal conditions between organic templates and inorganic sheets via strong hydrogen bondings of O...N atoms. Crystal data: monoclinic, P2(1) (No. 4), a = 10.069(2) A, b = 8.0875(16) A, c = 10.598(2) A, beta = 94.71(3) degrees, z = 2, R(1) = 0.0325 [I > 2sigma(I)], and wR(2) = 0.0807 (all data); Flack parameter: 0.03.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号