首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
用麦克斯韦(Maxwell)能量分布和能量均分原理推导溶质迁移速度方程, 研究了N2- GDX-101气固色谱体系中5种烷烃的迁移速度、迁移活化能和迁移中溶质分子热运动的作用. 得到的迁移活化能可以很好地解释溶质的迁移速度. 研究结果表明, 溶质分子的转动\, 振动能量显著地影响迁移活化能. 用统计热力学的估算验证的计算结果表明, 迁移活化能明显小于脱附焓. 溶质迁移时可能远未达到解吸脱附的状态. 流动相驱动的溶质迁移可能主要为吸附状态下的滑移.  相似文献   

2.
通过对铁电光催化剂Bi_2MoO_6和聚甲基丙烯酸甲酯(PMMA)构建的有机-无机复合膜材料施加电场极化,来探究铁电极化对Bi_2MoO_6光催化剂活性提升的影响。未极化的Bi_2MoO_6在光照40 min时降解罗丹明B(RhB)的效率为57.6%,在光照150min时对双酚A(BPA)的降解效率为33.4%。在15 V电压下极化1.5 h的Bi_2MoO_6材料在相同条件下降解罗丹明B和双酚A的效率分别达到98.1%和79.2%,光催化活性得到了较大的提升。光催化活性提升的原因归因于内部电场的增强。未极化的Bi_2MoO_6的内电场的铁电畴是无序、分布不均匀的,光生载流子非常容易发生体内复合。当外加电场极化Bi_2MoO_6时,Bi_2MoO_6的铁电畴趋于有序,极化方向趋于同一方向,表面一侧(C+区)产生正电荷,在另一侧(C-区)产生负电荷,从C-区指向C+区的极化电场推动光生电子和空穴分别迁移到C+和C-区域。这一过程促使光生电荷载流子快速从体内迁移至表面,提高和延长了光生载流子的分离效率和寿命,导致光催化活性的提升。  相似文献   

3.
水化镁基蒙脱石的分子动力学模拟   总被引:1,自引:0,他引:1  
方沁华  黄世萍  刘志平  汪文川 《化学学报》2004,62(24):2407-2414
利用分子动力学(MD)模拟了300 K时镁基蒙脱石(粘土)层间水和镁离子的结构和动力学性质.模拟结果显示水在粘土层间分为二层,只有一小部分水被粘土表面吸附,与粘土结构中的羟基形成氢键,不同分布位置的水处于动态平衡.层间水分子氢键配位数比普通水少24%左右,水在粘土中自扩散系数D=5.355×10-10 m2·s-1,约为主体相水的1/4.镁离子在粘土层间形成一层,其与水分子配位数约为6.进一步讨论了温度对粘土层中水的结构和动力学性质的影响.随着温度升高,水层的局部密度ρ(z)降低,水在XY方向的扩散系数不断增大.当温度达到600 K后,层间水分子间的氢键断裂,与超临界状态下水的结构相似,层间水的扩散系数达最大值,温度进一步升至700 K时,其值基本无变化.  相似文献   

4.
气液界面上阴离子表面活性剂单层膜的分子动力学模拟   总被引:2,自引:0,他引:2  
苑世领  崔鹏  徐桂英  刘成卜 《化学学报》2006,64(16):1659-1664
用分子动力学方法研究了阴离子表面活性剂十二烷基硫酸钠(SDS)在气液界面上的结构和动力学性质. 选择单分子占有面积分别为0.45和0.68 nm2的两个模拟体系, 通过径向分布函数表征了单层膜的厚度, 并根据疏水链中碳原子与极性头中硫原子之间组成的矢量分布和取向函数, 对比了不同界面单层膜的有序排列情况. 结果表明在分子占有面积较小达到饱和吸附的情况下, 界面上的SDS具有较好的有序性. 通过计算气液界面附近水分子的扩散系数发现: 由于氢键和静电作用的影响, 界面区域内的水分子较本体溶液中的水分子有较弱的迁移能力.  相似文献   

5.
对50个单元构成的聚N,N-二乙基丙烯酰胺(PDEA)低聚物的水溶液体系进行了分子动力学的研究,分别模拟了300 K时的伸展链、310 K时的伸展链以及紧缩链与水构成的体系,对溶液中PDEA周围溶剂水分子的分布情况以及水分子形成氢键的情况进行了统计,结果表明在PDEA周围的水产生了比本体水更有序的结构,形成了更多的氢键,这种有序结构维持到第二水合层甚至更远.发生相分离后,PDEA与水分子形成的氢键大部分未被破坏,水合层中每个水分子形成的氢键数也没有明显变化,但水合层(形成有序结构的水分子)内水分子数目的减少使得总的氢键数目减少,从而造成体系能量增加及熵增加.同时还研究了聚合物及水分子的自扩散系数,表明PDEA影响周围水分子结构的同时,对水的动力学性质也产生了很大影响.  相似文献   

6.
采用G3B3方法构建反式2-甲基-2-丁烯酸甲酯与O3反应体系以及后续Criegee自由基有、无水分子参与下异构化反应的势能面剖面.结果表明,反式2-甲基-2-丁烯酸甲酯与O3反应首先生成一个稳定的五元环中间体,此中间体按断键位置不同后续裂解反应存在两条路径,分别生成产物P1(CH3CHOO+CH3OC(O)C(CH3)O)和P2(CH3CHO+CH3OC(O)C(CH3)OO).利用经典过渡态理论(TST)并结合Wigner矫正模型计算了200-1200 K温度区间内标题反应的速率常数kTST/W.计算结果显示,294 K时,该反应速率常数为7.55×10-18cm3molecule-1s-1,与Bernard等对类似反应所测实验值非常接近.生成的Criegee自由基(CH3CHOO和CH3OC(O)C(CH3)OO)可分别与水分子发生α-加成及β-氢迁移反应,其中Criegee自由基与水的α-加成反应较其与水的β-氢迁移反应具有优势.另外与无水分子参与CH3CHOO和CH3OC(O)C(CH3)OO异构化反应相比,水分子的参与使得异构化反应较为容易进行.  相似文献   

7.
采用CCSD(T)/aug-cc-pVTZ//B3LYP/6-311+G(2df,2p)方法对HO2+H2S反应及单分子水参与其主通道的微观机理和速率常数进行了研究.结果表明,HO2+H2S反应主通道为生成产物为H2O2+HS的通道,其表观活化能为14.94 kJ/mol.考虑单分子水对主产物通道的影响发现,所得的势能面比无水参与的反应复杂得多,经历了H2O…HO2+H2S(RW1),HO2…H2O+H2S(RW2)和H2O…H2S+HO2(RW3)3个通道,RW1~RW6共6个路径.其中通道RW1是水分子参与HO2+H2S反应主通道的优势通道.在216.7~298.2K温度范围内通道RW1的有效速率常数呈现出正温度系数效应,在298 K时,k’RW 1/ktotal达到54.2%,表明在实际大气环境中水分子对HO2+H2S反应的主通道具有明显影响.  相似文献   

8.
电场条件下高分子共混物组分浓度梯度化的研究   总被引:2,自引:0,他引:2  
研究了聚乙烯醇/聚丙烯酸高分子共混物水溶液中,共混物各组分在电场诱导条件下沿电场方向的浓度梯度分布情况.通过测定不同时刻PVA/PAA高分子共混物水溶液在电场的不同区域内的pH值,研究了电场诱导下共混物各组分沿电场方向的迁移过程.结果表明,PAAn-向电场正极迁移,同时由于浓差梯度,PVA向负极迁移,并形成浓度梯度分布.随时间的延长,高分子共混物的组分梯度程度逐渐加大.  相似文献   

9.
研究了35℃ NaCl-KCl-H2O三元体系的活度系数.用Na+、 K+和Cl-的离子选择性电极分别测得了(0.1~ 1.5 mmol/L)不同离子强度下该体系中NaCl和KCl的平均活度系数.回归了该体系Pitzer方程的相互作用参数.实验值与计算值最大相对误差为5.6%,而平均相对误差为2.3%.  相似文献   

10.
甲烷水合物分解及自保护效应的分子动力学模拟   总被引:7,自引:0,他引:7  
采用分子动力学(MD)方法, 在温度T = 240, 260, 280和300 K的条件下模拟了Ⅰ型甲烷水合物晶体的分解过程. 研究发现,水合物分解后将在相界面上形成一层“准液膜”,准液膜中水分子的结构性质、空间取向和动力学性质均出现由“似晶”到“似液”的渐变过程. 在水合物分解过程中, 准液膜的存在对水分子和甲烷分子的扩散形成传质阻力. 由于甲烷分子必须穿过准液膜才能进入气相, 准液膜的传质阻力抑制了甲烷分子向气相的扩散过程, 致使水合物的分解速率随之降低, 从而产生自保护效应. 当温度低于水的冰点时, 准液膜中水分子的“似晶”程度较高, 准液膜的传质阻力较大, 自保护效应较明显. 当温度高于水的冰点时, 准液膜中水分子的“似液”程度较高, 准液膜的传质阻力显著下降, 水合物的自保护效应明显减弱.  相似文献   

11.
The electroosmotic drag coefficient of water molecules in hydrated sodium perfluorosulfonate electrolyte polymer is evaluated on the basis of the velocity distribution functions of the sodium cations and water molecules with an electric field applied using molecular dynamics simulations. The simulation results indicate that both velocity distribution functions of water molecules and of sodium cations agree well with the classic Maxwellian velocity distribution functions when there is no electric field applied. If an electric field is applied, the distribution functions of velocity component in directions perpendicular to the applied electric field still agree with the Maxwellian velocity distribution functions but with different temperature parameters. In the direction of the applied electric field, the electric drag causes the velocity distribution function to deviate from the Maxwellian velocity distribution function; however, to obey the peak shifted Maxwellian distribution function. The peak shifting velocities coincide with the average transport velocities induced by the electric field, and could be applied to the evaluation of the electroosmotic drag coefficient of water. By evaluation of the transport velocities of water molecules in the first coordination shells of sodium cations, sulfonate anion groups, and in the bulk, it is clearly shown that the water molecules in the first coordination shell of sodium cations are the major contribution to the electroosmotic drag and momentum transfer from water molecules within the first coordination shell to the other water molecules also contributes to the electroosmotic drag. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

12.
An atomistic MD simulation method has been developed to study the electroosmotic drag in the hydrated perfluorosulfonic acid polymer. The transport characteristics of the hydroniums and water molecules are evaluated from their velocity distribution functions with an electric field applied. It is shown that the microstructure of the hydrated perfluorosulfonic acid polymer is not perturbed significantly by the electric field up to 2 V/microm, and the velocity distribution functions obey the peak shifted Maxwell velocity distribution functions. The evaluated peak shifting velocities are only about 1% of the average thermal motion. The hydronium flow and water flow are evaluated from the average transport velocities or the peak shifting velocities. The electroosmotic drag coefficients from the MD simulations are in good correspondence with the experimental values. It is also shown that the electroosmotic drag coefficient has no or weak temperature dependence.  相似文献   

13.
Using computer modeling, we have studied Na+–24H2O and K+–24H2O clusters. We propose ion-water interaction potentials. We obtain structural, energy, and dynamic characteristics of the studied clusters. We show different mechanisms for exchange of water molecules surrounding the Na+ and K+ ions: single-particle in the case of Na+, and close to K+, along with single-particle exchange, a large percentage of multiparticle cooperative exchange of water molecules. This difference is explained by the different degrees of orientation of the water molecules surrounding these ions, by the presence of a unified deformed network of H bonds in the K+ cluster and its absence in the Na+ cluster. We propose a negative hydration mechanism for the K+ ion.Institute of General and Inorganic Chemistry, Russian Academy of Sciences. Institute of Physical Chemistry, Russian Academy of Sciences. Translated from Zhurnal Strukturnoi Khimii, Vol. 34, No. 2, pp. 96–104, March–April, 1993.  相似文献   

14.
Membrane catalytic deprotonation of water (water splitting) has been studied on the base of a new model which suggests that water molecules are prepolarized by H+-affinited and OH-affinited fixed charged groups of membrane before their dissociation is enhanced by electric field. Introducing some anion selective groups such as Mg(OH)2·xH2O or amine into a cation selective perfluorosulfonated membrane can initiate a dramatic water splitting effect and give rise to new high frequency peaks on the OH and OD stretching region of IR spectra. This supports the hypothesis that some water molecules were affected by the surrounding electrical field from the bipolar membrane-like structure. Perfluorocarboxylic membrane was also tested in a electrolytic cell and it causes H+ ion fluxes much larger than Nafion-type membrane. We classify the effect as membrane catalytic deprotonation of carboxylic acid group.  相似文献   

15.
The structures of a series of binary molybdates with the lithium cation LiM(MoO4) · H2O (M = K+, Na+, Rb+, NH 4 + ) are analyzed and compared. Except for LiNa(MoO4) · 2H2O, in all other compounds the lithium cations have a tetrahedral coordination formed by the oxygen atoms of the water molecules and molybdate groups. The structure of LiNa(MoO4) · 2H2O was found to contain a unique coordination polyhedron of lithium, i.e., a trigonal bipyramid formed by the O atoms of the water molecules and oxo anions.  相似文献   

16.
Group theoretical analysis and linear combinations of molecular orbitals of the cation and solvent are used to establish the nature and stability of bonds and hence the electric mobility of the cation and the viscosity of the electrolyte depending on the type of cation (Li+, Na+, K+, Rb+, Cs+) and molecules (H2O, NH3, H2CO, (CH3)2CO, CH3CN). Solvation effects on the UV photoelectron and intramolecular vibrational IR and NMR spectra are revealed.  相似文献   

17.
The transport properties of separating membranes MF-4SK are studied during electrolysis of H2O in solutions of KOH. The effective diffusion coefficients of molecules of KOH and H2O and the transfer coefficients of ions K+ and OH? and molecules of H2O are measured at KOH concentrations reaching 11 M, currents reaching 0.31 A cm?2, at ambient temperature and at 80°C. In contact with a KOH solution in the concentration interval 0.1 to 11 M, the membranes that initially swelled in H2O lose a considerable fraction of water that was present in them and the overall volume of clusters and solution-filled channels in them noticeably decreases. The coefficients of transfer by current of ions K+ out of anodic compartment into cathodic and the OH? ions in the reverse direction, respectively, happen to be equal to about 0.6 and 0.4 at ambient temperature and 0.8 and 0.2 at 80°C. The coefficients of transfer of water molecules out of the anodic volume into the cathodic volume in the process of electrolysis happen to be in the limits 1.6–1.9 at ambient temperature and in the limits 2.2–2.8 at 80°C. The effective diffusion coefficients of molecules of KOH and H2O at moderate concentrations of KOH (5.6 M) amount to ~2.6 × 10?7 and 30 × 10?7 cm2s?1 at ambient temperature and ~4 × 10?7 and 61 × 10?7 cm2s?1 at 80°C, respectively. At a high concentration of KOH (~10 M) these quantities substantially diminish.  相似文献   

18.
Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold surfaces and studied by cyclic electrochemical quartz crystal microbalance measurements in the presence of aqueous solutions of different concentrations containing M+Cl, where M+=H+, Li+, Na+, K+, Rb+, Cs+. The RuCl3 and the complexes formed during the electrochemical transformations show two or more reduction and reoxidation pairs of waves, depending on the experimental conditions (concentration, scan rate, and potential range). The voltammetric peaks are shifted into the direction of higher potentials with increasing electrolyte concentrations except at very high concentrations when the peaks belong to the first reduction/reoxidation processes move oppositely. The mass change was reversible, during reduction mass increase, while during oxidation mass decrease occurred at medium electrolyte concentrations in two, more or less distinct steps. At high or low concentrations the mass excursions are more complex involving different mass increase/decrease regions as a function of potential which vary with the potential range of the measurements. The peak potentials and the electrochemical activity strongly depend on the nature of the cations and pH. It is related to the formation of complexes in different compositions. The mass change decreases with increasing electrolyte concentrations attesting the important role of the water activity and the transport of solvent molecules. It was concluded that in dilute solutions during the first reduction step M+ ions enter the surface layer. The strongly hydrated Li+ ions transfer water molecules into the microcrystals, while simultaneously with the incorporation of K+, Rb+, and Cs+ ions H2O molecules leave the surface layer. The opposite transport of ions and solvent molecules occur during oxidation. In the course of further reduction the incorporation of all ions studied except that of Cs+ ions is accompanied with water sorption. The number of sorbed water molecules is proportional to the hydration number of these ions. A reaction scheme is proposed in which M+ m-3[RuIIICl m (H2O) n ]3-m · xH2O (m≥3) and [RuIIICl m (H2O) n ]3-m (Cl)3-m · xH2O (m≤3) type complexes are reduced to the respective – or depending on the electrolyte concentration higher or lower – Ru(II)chloro complexes resulting in mixed valence compounds (phases). Taking into account the layered structure of RuCl3 the electrochemical reduction can be explained as an intercalation reaction in that mixed valence intercalation phases with a general formula M x +(H2O) y [RuCl3] x are formed from RuCl3·x H2O. The reduction/reoxidation waves are related to the redox transformations of Ru(III) to Ru(II) sites, while the composition of the polynuclear complexes and the structure of microcrystals change. Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, March 13.−16., 2005.  相似文献   

19.
The samples from kaolin Sedlec were investigated by the help of DTA, TG, and temperature dependences of DC conductivity using Pt wire electrodes and linear heating up to 1,050 °C. After drying, the samples contained ~1.5 mass% of the physically bound water. DTA and TG reflected generally known facts about a release of the physically bound water, dehydroxylation, and metakaolinite → Si–Al spinel transformation. The results of electrical measurements showed the electric current passed over the maximum at 60 °C. The self-ionization of water results in the process H2O → H+ + OH? in the water layers on the crystal surfaces; consequently, OH? and H+ are the main charge carriers in the low-temperature region. The water molecules simultaneously evaporate from the sample which decreases the number of the charge carriers. When the physically bound water evaporates, the current is carried mostly by K+ and Na+ ions. During dehydroxylation, the hydroxyls OH? split into H+ and O2?. The ions H+ jump to the neighboring OH? groups creating the water molecules. The ions O2?remain bounded to the newly created metakaolinite lattice. Therefore, mobile protons contribute to the electric current. At the same time, this contribution gradually decreases because of the escape of H2O from the sample. The sharp current peak and DTA peak at 970 °C imply relatively fast metakaolinite → Si–Al spinel transformation. This DC current peak results from the shift of Al3+ and O2? ions into new positions.  相似文献   

20.
A quantitative kinetic theory has been developed to explain the results of experimental observation of the abnormally intense clustering of water molecules in the vapor phase in an ionizing radiation field at a moderate dose rate. The recombination is impeded because of the hydration of ion pairs and the formation of an abnormally high energy barrier (∼100 k B T) in molecular clusters. The buildup of the clusters of water molecules stabilized in the electric field of ion pairs results in a dramatic enhancement of the effect of ionizing radiation on the electric properties of the vapor. The values of the coefficients to the rate equation of ionization-recombination equilibrium were calculated on the molecular level by computer simulation of the hydration of the H3O+(H2O) n OH ion pair using the detailed model of intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号