首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), iridium(III), palladium(II) and platinum(II) complexes were synthesized with a 12-membered 1,4,7,10-tetraazadodeca-5,6,11,12-tetraene macrocylic ligand (L) and characterized by elemental analysis, molar conductance, magnetic susceptibility, IR, electronic, EPR and M?ssbauer [Fe(III)] spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature for M(L)Cl2 complexes [where M=Mn(II), Co(II), Ni(II), Cu(II)], 1:1 electrolytes for M'(L)Cl3 complexes [where M'=Cr(III), Fe(III), Ru(III) and Ir(III)] and 1:2 electrolytes for M'(L)Cl2 complexes [where M'=Pd(II) and Pt(II)]. Thus, the complexes may be formulated as [M(L)C1(2)], [M'(L)C1(2)]C1 and [M'(L)]C1(2), respectively [where L=ligand]. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Pd(II) and Pt(II) complexes which were four coordinate, square planar and diamagnetic.  相似文献   

2.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

3.
New ligands H(2)L2-H(2)L6 comprise the cyclen macrocycle which is N,N'-dialkylated at the 1,7-nitrogen atoms by three- and four-carbon alkyl chains bearing terminal sulfonic (C(3) H(2)L2), phosphonic (C(3) H(2)L3, C(4) H(2)L4) or carboxylic acid (C(3) H(2)L5, C(4) H(2)L6) groups, and HL7 is N-monoalkylated by a four-carbon sulfonic acid group. The ligands were prepared by alkylation of a bridged bisaminal intermediate. The syntheses of cobalt(III) complexes containing a tetradentate cyclen, N,N'-1,7-Me(2)cyclen, cyclam or L2-L7 ligand together with the bidentate 8-quinolinato (8QO(-)) ligand, of interest as it is a model for a more potent cytotoxic analogue, were investigated. Coordination of ligands (L) cyclen, N,N'-1,7-Me(2)cyclen or cyclam to cobalt(III) was achieved using Na(3)[Co(NO(6))] to form [Co(L)(NO(2))(2)](+). HOTf (trifluoromethansulfonic acid) was used to prepare the triflato complexes [Co(L)(OTf)(2)](+), followed by substitution of the labile triflato ligands to yield [Co(L)(8QO)](ClO(4))(2) isolated as the perchlorate salts. One further example containing cyclam and the 5-hydroxymethyl-8-quinolinato ligand was also prepared by this method. Complexes containing the pendant arm ligands L2-L6 were prepared from the cobalt precursor trans-[Co(py)(4)Cl(2)](+). Reaction of this complex with H(2)L2·4HCl and 8QOH produced [Co(L2)(8QO)] in one step and contains two deprotonated sulfonato pendant arms. The reaction of H(2)L3·4HBr with [Co(py)(4)Cl(2)](+) gave [Co(L3)]Cl in which L3 acts as a hexadenate ligand with the three-carbon phosphonato side chains coordinated to cobalt. H(2)L5·4HCl bearing three-carbon carboxylic acid pendant arms gave a similar result. The four-carbon ligands were coordinated to cobalt by reaction of [Co(py)(4)Cl(2)](+) with H(2)L4·4HBr or H(2)L6·4HCl to give [Co(HL4)Cl(2)] or [Co(H(2)L6)Cl(2)]Cl, which in turn with 8QOH gave the 8QO(-) complexes [Co(L4)(8QO)] bearing anionic phosphate pendant arms or [Co(H(2)L6)(8QO)]Cl(2) containing neutral carboxylic acid side chains. The reaction of Na(3)[Co(CO(3))(3)] with the mono-N-alkylated ligand HL7·4HCl and then HOTf gave [Co(L7)(CO(3))] and then in turn [Co(L7)(OTf)(2)]. The carbonato complex [Co(L7)(CO(3))] with [8QO](2)[SO(4)] produced [Co(L7)(CO(3))]. All complexes containing L7 bear an anionic sulfonato group on the side chain. The synthesis and characterisation of the six new ligands based on N-alkylated cylen ligand and the cobalt complexes outlined above are described, along with cyclic voltammograms of the 8QO(-) complexes and the molecular structures determined by X-ray crystallography of [Co(cyclen)(H(2)O)(2)](OTf)(3) (formed by aquation of the triflato complex), [Co(cyclen)(8QO)](ClO(4))(2), Co(L2)(8QO)·2H(2)O, Co(L4)(8QO)·6H(2)O and [Co(H(2)L6)Cl(2)]Cl·H(2)O. These demonstrate the coordination of the cyclen ligand in the folded anti-O,syn-N configuration with the N-alkylated nitrogens occupying apical positions.  相似文献   

4.
The Schiff base ligand, N,N'-bis-(2-thiophenecarboxaldimine)-3,3'-diaminobenzidine (L) obtained from condensation of 2-thiophenecarboxaldehyde and 3,3'-diaminobenzidine, was used to synthesize the complexes of type, [M2L2]Cl4 [M=Co(II), Ni(II), Cu(II), Cd(II) and Hg(II)]. The newly synthesized ligand (L) was characterized on the basis of the results of elemental analysis, FT-IR, 1H NMR, 13C NMR, mass spectroscopic studies and single crystal X-ray crystallography. The characteristic resonance signals in 1H NMR and 13C NMR spectra indicated the presence of azomethine group as a result of condensation reaction. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility measurements, molar conductance and spectroscopic studies viz., FT-IR, 1H and 13C NMR, UV-vis and EPR. EPR, UV-vis and magnetic moment data revealed an octahedral geometry for complexes with distortion in Cu(II) complex and conductivity data show 1:2 electrolytic nature of complexes. Absoption and fluorescence spectroscopic studies supported that Schiff base ligand L and its Co(II), Ni(II) and Cu(II) complexes exhibited significant binding to calf thymus DNA. The complexes exhibited higher affinity to calf thymus DNA than the free Schiff base ligand L.  相似文献   

5.
1 INTRODUCTION Widespread interest of metal-organic coordination compounds has been stirred by their intriguing struc- tural topologies and promising properties[1]. Al- though structural motifs of coordination compounds are mainly defined by metal ions’ coordination pre- ferences and chemical structures of organic ligands including the molecular angle, length and relative orientation of the donor groups[2], numerous other factors such as solvent systems, concentration, coun- terions and e…  相似文献   

6.
Mn(II), Co(II) and Ni(II) complexes of 2-methylcyclohexanone thiosemicarbazone(MCHTSC L(1)) and 2-methylcyclohexanone-(4)N-methyl-3-thiosemicarbazone (MCHMTSC L(2)), general composition [M(L)(2)X(2)] (where M = Mn(II), Co(II), Ni(II), L = L(1) or L(2) and X = Cl(-), NO(3)(-), and [(1/2)SO(4)(2-)) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, UV-vis, IR, EPR, and mass spectral studies. Various physico-chemical techniques suggest an octahedral geometry for all the complexes.  相似文献   

7.
[Co3(1,2-S2C6H4)3(PPh3)3][CoBr3(DMF)].sol (1, sol=CHCl3,O(C2H5)2,H2O) was obtained from the reaction of CoBr(PPh3)3 with Na2(S2C6H4) in chloroform. The Co3 core in the cation of 1 exhibits a metal-metal bonded isosceles triangle, in which the two longer Co-Co bonds are both bridged by S2C6H4 ligands on two sides of the triangle plane respectively, while the bottom short Co-Co bond is bridged by the third bidentate S2C6H4 ligand. A series of polynu-clear cobalt cluster compounds with phosphine, thiolate and/or sulphur ligands were prepared by low oxidation state Co+ with thiolates in organic solvents. These tri-, tetra-, hexa-, heptanuclear cluster compounds 1-8 with various types of crystal structures can be viewed as the condensed polynuclear cobalt complexes that the cobalt atom frameworks with sulphur bridged were built through the small triangular units of [Co3S3nL3] (n=1,2) with or without [CoL] (L=PR3, Br, Cl, 5-C5H5) fragments.  相似文献   

8.
A novel hexadentate nitrogen-sulphur donor [N(4)S(2)] macrocyclic ligand, i.e. 3,13-dithio-6,10,16,20-tetraoxo-8,18-dithia-1,2,4,5,11,12,14,15-octaazacyclocosane (L), has been synthesized. Cobalt (II) complexes of this ligand have been prepared and subjected to elemental analyses, molar conductance measurements, magnetic moment susceptibility measurements, mass, (1)H NMR (Ligand), IR, electronic, and EPR spectral studies. On the basis of molar conductance, complexes may be formulated as [Co(2)(L)X(2)]X(2) [where X=Cl(-), Br(-), NO(3)(-) and NCS(-)] due to their 1:2 electrolytic nature in dimethylformamide (DMF). All the complexes are of the high spin type and are four coordinated. On the basis of IR, electronic and EPR spectral studies tetrahedral geometry has been assigned to all the complexes. The antimicrobial activities of the ligand and its complexes, as growth inhibiting agents, have been screened in vitro against several species of bacteria and plant pathogenic fungi.  相似文献   

9.
张真工  王序昆  席真 《化学学报》1990,48(12):1147-1152
本文对(PH3P)2, Co(CO)2Cl和(dppe-P,P)2CO(CO)+(dppe=Ph2CH2CH2PPh2)五配位C2O对称性模型化合物进行了分轨道研究, 结果表明, 钴的3d轨道很少参与成键, 钴的4s, 4P与配体的S,P轨道通过形式上的二电子三中心键和二电子二中心键的相互作用构成五配位, 此外, 还解释了这两种化合物不同稳定性的原因。  相似文献   

10.
A method for the synthesis of the multicomponent ionic complexes: [Cr(I)(C(6)H(6))(2) (.+)][Co(II)(tpp)(fullerene)(-)].C(6)H(4)Cl(2), comprising bis(benzene)chromium (Cr(C(6)H(6))(2)), cobalt(II) tetraphenylporphyrin (Co(II)(tpp)), fullerenes (C(60), C(60)(CN)(2), and C(70)), and o-dichlorobenzene (C(6)H(4)Cl(2)) has been developed. The monoanionic state of the fullerenes has been proved by optical absorption spectra in the UV/vis/NIR and IR ranges. The crystal structures of the ionic [[Cr(I)(C(6)H(6))(2)](.+)](1.7)[[Co(II)(tpp)(C(60))](2)](1.7-). 3.3 C(6)H(4)Cl(2) and [[Cr(I)(C(6)H(6))(2)] (.+)](2)[Co(II)(tpp)[C(60)(CN)(2)]](-)[C(60)(CN)(2) (.-)]).3 C(6)H(4)Cl(2) are presented. The essentially shortened Co.C(fullerene) bond lengths of 2.28-2.32 A in these complexes indicate the formation of sigma-bonded [Co(II)(tpp)][fullerene](-) anions, which are diamagnetic. All the ionic complexes are semiconductors with room temperature conductivity of 2 x 10(-3)-4 x 10(-6) S cm(-1), and their magnetic susceptibilities show Curie-Weiss behavior. The neutral complexes of Co(II)(tpp) with C(60), C(60)(CN)(2), C(70), and Cr(0)(C(6)H(6))(2), as well as the crystal structures of [Co(II)(tpp)](C(60)).2.5 C(6)H(4)Cl(2), [Co(II)(tpp)](C(70)). 1.3 CHCl(3).0.2 C(6)H(6), and [Cr(0)(C(6)H(6))(2)][Co(II)(tpp)] are discussed. In contrast to the ionic complexes, the neutral ones have essentially longer Co.C(fullerene) bond lengths of 2.69-2.75 A.  相似文献   

11.
The 'Click'-derived tripodal ligand tris[(1-benzyl-1H-1,2,3-triazole-4-yl)methyl]amine, tbta, was used to synthesize the complexes [Fe(tbta)Cl]BF(4), 1, and [Co(tbta)Cl]BF(4), 2. Both complexes were characterized by (1)H NMR spectroscopy and elemental analysis. Single-crystal X-ray structural determination of 2 shows a 4 + 1 coordination around the cobalt(II) center with a rather long bond between Co(II) and the central amine nitrogen atom of tbta. Such a coordination geometry is best described as capped tetrahedral. 1 and 2 are thus the first examples of pseudotetrahedral coordinated Fe(II) and Co(II) complexes with tbta. A combination of SQUID susceptometry, EPR spectroscopy, M?ssbauer spectroscopy, and DFT calculations was used to elucidate the electronic structures of these complexes and determine the spin state of the metal center. Comparisons are made between the complexes presented here with related complexes of other ligands such as tris(2-pyridylmethyl)amine, tmpa, hydrotris(pyrazolyl) borate, Tp, and tris(2-(1-pyrazolyl)methyl)amine, amtp. 1 and 2 were tested as precatalysts for the homopolymerization of ethylene, and both complexes delivered distinctly different products in this reaction. Blind catalyst runs were carried out with the metal salts to prove the importance of the tripodal ligand for product formation.  相似文献   

12.
Titiš J  Boča R 《Inorganic chemistry》2011,50(22):11838-11845
The magnetostructural D correlation for hexacoordinated cobalt(II) complexes is outlined. The structural and magnetic properties of a series of mononuclear cobalt(II) complexes with the general formulas [Co(II)(L)(6)]X(2), [Co(II)(L)(2)X(2)], and [Co(II)(L)(2)(H(2)O)(2)(car)(2)] have been investigated where the coordination sphere is formed by nitrogen/oxygen-donor heterocycle (L), carboxylato (car), aqua, and chlorido ligands. The chromophores of these compounds involve {CoN(6)}, {CoO(6)}, {CoO(4)O'(2)}, {CoN(2)O(2)O'(2)}, and {CoN(2)O(2)Cl(2)}. All complexes were subjected to magnetochemical investigation down to 2 K (SQUID susceptibility and magnetization measurements). Most of the studied complexes show magnetic behavior typical for zero-field-splitting systems. The magnetism of the complex [Co(H(2)O)(6)](6-OHnic)(2) reflects the presence of the magnetic angular momentum in the ground-state crystal-field term. The obtained values of the magnetic anisotropy (D or δ) have been correlated with the structural distortion of the coordination polyhedron. This correlation can be understood with the help of crystal-field theory, where the magnetic anisotropy parameters are related to the splitting of the lowest crystal-field multiplets.  相似文献   

13.
Pan L  Huang X  Phan HL  Emge TJ  Li J  Wang X 《Inorganic chemistry》2004,43(22):6878-6880
The reaction of Co(II) with 5,15-dipyridyl-10,20-diphenylporphyrin (H(2)DPyP) produces the first metal-organic coordination polymer supported by a trans meso-bifunctional porphyrin ligand. Formulated empirically as [Co(3)(DPyP)(3)] x 4DMF, this compound exhibits a ribbonlike coordination network consisting of tetranuclear metalloporphyrin cages. The DMF guest molecules fill the intra-ribbon cages as well as the inter-ribbon space. Evacuation of [Co(3)(DPyP)(3)] x 4DMF at 130 degrees C generates [Co(3)(DPyP)(3)] that retains crystallinity, as shown by its powder X-ray diffraction pattern, which is consistent with that of [Co(3)(DPyP)(3)] x 4DMF.  相似文献   

14.
Three hexadentate, asymmetric pendent arm macrocycles containing a 1,4,7-triazacyclononane-1,4-diacetate backbone and a third, N-bound phenolate or thiophenolate arm have been synthesized. In [L(1)](3)(-) the third arm is 3,5-di-tert-butyl-2-hydroxybenzyl, in [L(2)](3)(-) it is 2-mercaptobenzyl, and in [L(3)](3)(-) it is 3,5-di-tert-butyl-2-mercaptobenzyl. With trivalent metal ions these ligands form very stable neutral mononuclear complexes [M(III)L(1)] (M = Ga, Fe, Co), [M(III)L(2)] (M = Ga, Fe, Co), and [M(III)L(3)] (M = Ga, Co) where the gallium and cobalt complexes possess an S = 0 and the iron complexes an S = (5)/(2) ground state. Complexes [CoL(1)].CH(3)OH.1.5H(2)O, [CoL(3)].1.17H(2)O, [FeL(1)].H(2)O, and [FeL(2)] have been characterized by X-ray crystallography. Cyclic voltammetry shows that all three [M(III)L(1)] complexes undergo a reversible, ligand-based, one-electron oxidation generating the monocations [M(III)L(1)(*)](+) which contain a coordinated phenoxyl radical as was unambiguously established by their electronic absorption, EPR, and M?ssbauer spectra. In contrast, [M(III)L(2)] complexes in CH(3)CN solution undergo an irreversible one-electron oxidation where the putative thiyl radical monocationic intermediates dimerize with S-S bond formation yielding dinuclear disulfide species [M(III)L(2)-L(2)M(III)](2+). [GaL(3)] behaves similarly despite the steric bulk of two tertiary butyl groups at the 3,5-positions of the thiophenolate, but [Co(III)L(3)] in CH(2)Cl(2) at -20 to -61 degrees C displays a reversible one-electron oxidation yielding a relatively stable monocation [Co(III)L(3)(*)](+). Its electronic spectrum displays intense transitions in the visible at 509 nm (epsilon = 2.6 x 10(3) M(-)(1) cm(-)(1)) and 670sh, 784 (1.03 x 10(3)) typical of a phenylthiyl radical. The EPR spectrum of this species at 90 K proves the thiyl radical to be coordinated to a diamagnetic cobalt(III) ion (g(iso) = 2.0226; A(iso)((59)Co) = 10.7 G).  相似文献   

15.
The complexes resulting from the interaction of a new Schiff base ligand derived from crosslinked polystyrene bound benzaldehyde and 2-aminobenzimidazole with a square planar complex [Co(TPP)] (where TPP = meso-tetraphenylporphyrin), and also with tetrahedral complexes [Co(BPBI)2X2] (where BPBI = 1-benzyl-2-phenylbenzimidazole, X = Cl, Br, or NCS) have been isolated and characterized. The percentages of cobalt and nitrogen in the complexes show that only one Schiff base unit is coordinated to cobalt. Infrared spectra suggest that the bonding of the polymer ligand to cobalt is through the N-3 atom of the benzimidazole moiety. The EPR spectra indicate that all the complexes are in the low-spin state and have a square pyramidal environment around cobalt(II). © 1992 John Wiley & Sons, Inc.  相似文献   

16.
Complexes of diacetyl salicylaldehyde oxalic acid dihydrazone, CH3COC(CH3)= NNHCOCONHN=CHC6H4(OH),(dsodh) and diacetyl salicylaldehyde malonic acid dihydrazone CH3COC(CH3)=NNHCOCH2CONHN=CHC6H4(OH), (dsmdh) of general compositions [M(L)]Cl, [M′(L)Cl], [M(L′)]Cl and [M′(L′)Cl] (where M?=?Co(II), Cu(II), Zn(II), Cd(II) and M′?=?Ni(II); HL?=?dsodh and HL′?=?dsmdh) were prepared and characterized by elemental analyses, molar conductance, magnetic moments, electronic, ESR and infrared spectra and X-ray diffraction data. The magnetic moments and electronic spectra indicate six-coordinate octahedral geometry for Co(II) and square planar geometry for Ni(II) complexes. The ESR spectral data of Cu(II) complexes in DMF solution reveal a tetragonally distorted octahedral geometry. Both ligands bond through >C=O, >C=N and deprotonated phenolate groups in all octahedral complexes and through >C=N and deprotonated phenolate groups in Ni(II) square planar complexes. The lattice parameters for Cu(dsodh) and Co(dsmdh) correspond to an orthorhombic and Ni(dsodh) corresponds to a tetragonal crystal lattice.

The complexes show significant antifungal activity against a number of pathogenic fungi viz. Stemphylium, Myrothecium and Alternaria. The antibacterial activity was studied against Pseudomonas fluorescence (gram ?ve) and Clostridium thermocellum (gram +ve).  相似文献   

17.
Novel complexes of Co(II), Ni(II), Cu(II) and Pd(II) with the new ligand [N,N'-bis(2-carboxy-1-oxo-phenelenyl)ethylenediamine] (H2L) have been synthesized and characterized on the basis of elemental analyses, magnetic susceptibility, thermal, infrared, electronic, 1H NMR and EPR spectral studies. Infrared and 1H NMR spectra show that H2L acts as a binegative tetradentate ligand. Coordination occurs through deprotonated carboxylate oxygens and nondeprotonated amido nitrogens in all the complexes. Electronic spectral studies and magnetic moment values suggest N2O2 coordination around each metal centre with strong field square planar chromophores. The probable structures of the complexes have been assigned on the basis of spectral studies. The complex formation between M(II) [M(II) = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)] and (L2-) has also been studied potentiometrically in 75% aqueous DMF at 25 degrees C in 0.1 M NaClO4. The stability constants were found to follow the order: Mn(II) < Co(II) < Ni(II) < Cu(II) > Zn(II).  相似文献   

18.
In acidic aqueous solution, a cobalt(III) complex containing monodentate N(9)-bound adeninate (ade(-)), cis-[Co(ade-kappaN(9))Cl(en)(2)]Cl (cis-[1]Cl), underwent protonation to the adeninate moiety without geometrical isomerization or decomposition of the Co(III) coordination sphere, and complexes of cis-[CoCl(Hade)(en)(2)]Cl(2) (cis-[2]Cl(2)) and cis-[Co(H(2)ade)Cl(en)(2)]Cl(3) (cis-[3]Cl(3)) could be isolated. The pK(a) values of the Hade and H(2)ade(+) complexes are 6.03(1) and 2.53(12), respectively, at 20 degrees C in 0.1 M aqueous NaCl. The single-crystal X-ray analyses of cis-[2]Cl(2).0.5H(2)O and cis-[3]Cl(2)(BF(4)).H(2)O revealed that protonation took place first at the adeninate N(7) and then at the N(1) atoms to form adenine tautomer (7H-Hade-kappaN(9)) and cationic adeninium (1H,7H-H(2)ade(+)-kappaN(9)) complexes, respectively. On the other hand, addition of NaOH to an aqueous solution of cis-[1]Cl afforded a mixture of geometrical isomers of the hydroxo-adeninato complex, cis- and trans-[Co(ade-kappaN(9))(OH)(en)(2)](+). The trans-isomer of chloro-adeninato complex trans-[Co(ade-kappaN(9))Cl(en)(2)]BF(4) (trans-[1]BF(4)) was synthesized by a reaction of cis-[2](BF(4))(2) and sodium methoxide in methanol. This isomer in acidic aqueous solution was also stable toward isomerization, affording the corresponding adenine tautomer and adeninium complexes (pK(a) = 5.21(1) and 2.48(9), respectively, at 20 degrees C in 0.1 M aqueous NaCl). The protonated product of trans-[Co(7H-Hade-kappaN(9))Cl(en)(2)](BF(4))(2).H(2)O (trans-[2](BF(4))(2).H(2)O) could also be characterized by X-ray analysis. Furthermore, the hydrogen-bonding interactions of the adeninate/adenine tautomer complexes cis-[1]BF(4), cis-[2](BF(4))(2), and trans-[2](BF(4))(2) with 1-cyclohexyluracil in acetonitrile-d(3) were investigated by (1)H NMR spectroscopy. The crystal structure of trans-[Co(ade)(H(2)O)(en)(2)]HPO(4).3H(2)O, which was obtained by a reaction of trans-[Co(ade)(OH)(en)(2)]BF(4) and NaH(2)PO(4), was also determined.  相似文献   

19.
Mono- and dicopper(II) complexes of a series of potentially bridging hexaamine ligands have been prepared and characterized in the solid state by X-ray crystallography. The crystal structures of the following Cu(II) complexes are reported: [Cu(HL3)](ClO4)(3), C11H31Cl3CuN6O12, monoclinic, P2(1)/n, a = 8.294(2) A, b = 18.364(3) A, c = 15.674(3) A, beta = 94.73(2) degrees, Z = 4; ([Cu2(L4)(CO3)](2))(ClO4)(4).4H2O, C40H100Cl4Cu4N12O26, triclinic, P1, a = 9.4888(8) A, b = 13.353(1) A, c = 15.329(1) A, alpha = 111.250(7) degrees, beta = 90.068(8) degrees, gamma = 105.081(8) degrees, Z = 1; [Cu2(L5)(OH2)(2)](ClO4)(4), C13H36Cl4Cu2N6O18, monoclinic, P2(1)/c, a = 7.225(2) A, b = 8.5555(5) A, c = 23.134(8) A, beta = 92.37(1) degrees, Z = 2; [Cu2(L6)(OH2)(2)](ClO4)(4).3H2O, C14H44Cl4Cu2N6O21, monoclinic, P2(1)/a, a = 15.204(5) A, b = 7.6810(7) A, c = 29.370(1) A, beta = 100.42(2) degrees, Z = 4. Solution spectroscopic properties of the bimetallic complexes indicate that significant conformational changes occur upon dissolution, and this has been probed with EPR spectroscopy and molecular mechanics calculations.  相似文献   

20.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes have been synthesized with a new tetradentate ligand viz. 1,3,7,9-tetraaza-2,4,8,10-tetraketo-6,12-diphenyl-cyclododecane (L) and characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to be nonelectrolytic nature for Mn(II), Co(II) and Cu(II) while 1:2 electrolytes for Ni(II) complexes. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl and NO3).On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Mn(II) and Co(II) complexes, square-planar for Ni(II) whereas tetragonal for Cu(II) complexes. The ligand and its complexes were also evaluated against the growth of bacteria and pathogenic fungi in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号