首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate relative equilibria of an oblate gyrostat with a discrete damper. Linear and nonlinear methods yield stability conditions for simple spins about the nominal principal axes. We use analytical and numerical methods to explore other equilibria, including bifurcations that occur for varying rotor momentum and damper parameters. These bifurcations are complex structures that are perturbations of the zero rotor momentum case. We use Lyapunov–Schmidt reduction to determine an analytic relationship between parameters to determine conditions for which a jump phenomenon occurs. This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States  相似文献   

2.
The dynamics of a modified Jeffcott rotor is studied, including rotor torsional deformation and rotor-stator contact. Conditions are studied under which the rotor undergoes either forward synchronous whirling or self-excited backward whirling motions with continuous stator contact. For forward whirling, the effect on the response is investigated for two commonly used rotor-stator friction models, namely, the simple Coulomb friction and a generalized Coulomb law with cubic dependence on the relative slip velocity. For cases with and without the rotor torsional degree of freedom, analytical estimates and numerical bifurcation analyses are used to map out regions in the space of drive speed and a friction parameter, where rotor-stator contact exists. The nature of the bifurcations in which stability is lost are highlighted. For forward synchronous whirling fold, Hopf, lift-off, and period-doubling bifurcations are encountered. Additionally, for backward whirling, regions of transitions from pure sticking to stick-slip oscillations are numerically delineated.  相似文献   

3.
An isotropic flexible shaft, acted by nonlinear fluid-induced forces generated from oil-lubricated journal bearings and hydrodynamic seal, is considered in this paper. Dimension reductions of the rotor system were carried out by both the standard Galerkin method and the nonlinear Galerkin method. Numerical simulations provide bifurcation diagrams, spectrum cascade, orbits of the disk center and Poincaré maps, to demonstrate the dynamical behaviors of the system. The results reveal transitions, or bifurcations, of the rotor whirl from being synchronous to non-synchronous as the unstable speed is exceeded. The non-synchronous oil/seal whirl is a quasi-periodic motion. In the regime of quasi-periodic motion, the “windows” of multi-periodic motion were found. The investigation shows that the nonlinear Galerkin method has an advantage over the standard one with the same order of truncations, because the influences of higher modes are considered by the former.  相似文献   

4.
Auxiliary bearings are utilized in practical installations of magnetically suspended rotating machines with the main functions to provide support to the rotating machines during their non-operational period, and to protect the magnetic bearings and the rotating assembly from being damaged due to power loss during operation. The relatively small clearances of these bearings, which are typically half of that of the magnetic bearings, may at time cause contact between the rotor and these bearings to occur even during normal operation of the rotating machines. The work presented herein examines the bifurcations in the response of a rigid rotor supported by load sharing between magnetic and auxiliary bearings, which occurs during contact between the rotor and the auxiliary bearings. Numerical results revealed the occurrence of period-doubling bifurcation resulting in vibrations of period-2, -4, -8, -16 and -32, as well as quasi-periodic and chaotic vibrations. The results further showed that for a relatively small rotor imbalance magnitude, which is within the prescribed level of certain classes of practical rotating machinery, such nonlinear dynamical phenomena would not have been discovered had the auxiliary bearings forces been omitted in the model of the rotor-bearing system. As these bearings are essential elements in practical installations of magnetically supported rotating machines, failure to include them in the rotor-bearing model may result in incorrect prediction of the rotor’s vibration response.  相似文献   

5.
The harmonic oscillations of a Duffing oscillator driven by a limited power supply are investigated as a function of the alternative strength of the rotor. The semi-trivial and non-trivial solutions are derived. We examine the stability of these solutions and then explore the complex behaviors associated with the bifurcations sequences. Interestingly, a 3D diagram provides a global view of the effects of alternate strength on the appearance of chaos and hyperchaos on the system.  相似文献   

6.
This paper introduces a numerical scheme for simulating instabilities of a nonlinear rotordynamic system including thermal effects in the fluid film bearings. The method utilizes shooting/arc-length continuation, and simultaneous, finite element based solutions of the variable viscosity Reynolds equation and the energy equation. This provides a means to investigate the effects of the thermo-hydrodynamic THD model on bifurcations and nonlinear rotordynamic stability. A “Jeffcott” type rigid rotor is modeled as supported on double-layered fluid film, floating ring bearings (FRB). The FRB are known to produce highly nonlinear forces as functions of relative and absolute internal displacements and velocities. Both autonomous (free vibration) and non-autonomous (mass unbalanced excitation) cases and algorithms are presented. The computational workload and execution time required for determining coexisting periodic solutions is significantly reduced by employing deflation and parallel computing methods. The THD model nonlinear responses and bifurcation diagrams are compared with isoviscous model results for various lubricant supply temperatures. The autonomous case, THD model orbit sizes and onset of Hopf and saddle–node bifurcations for coexisting steady state responses, may have significant differences relative to the isothermal model results. The onset of Hopf bifurcation is strongly dependent on thermal conditions, and the saddle–node bifurcation points are significantly shifted compared to the isothermal model. This tends to increase the likelihood of bifurcation from a machine operators standpoint. In the non-autonomous case, large unbalance forces create sub-synchronous and quasi-periodic responses at low spin speeds. The responses stability and onset of bifurcations of these responses are highly reliant on the lubricant supply temperature.  相似文献   

7.
This paper focuses on the nonlinear dynamic and bifurcation characteristics of an aircraft rotor system affected by the maneuvering flight of the aircraft. The equations of motion of the system are formulated with the consideration of the nonlinear supports of Duffing type and the sine maneuver load of a proposed maneuvering flight model. By utilizing the multiple scales method to solve the motion equations analytically, the bifurcation equations are obtained. Accordingly, the response and the bifurcation characteristics of the system are analyzed respectively. Basically, the increase of the maneuver load may increase the formant frequency as well as the primary resonance frequencies. Through numerical simulations, four different types of response characteristics of the system during the maneuvering flight are found, which are compared with the theoretical results, and it shows good qualitative agreements between them. Furthermore, the maneuver load can make an apparent effect on the bifurcation. The results in this paper will provide a better understanding for the effect of aircraft maneuvering flight on the dynamics and bifurcations of the rotor system.  相似文献   

8.
The 1:2 subharmonic resonance of the labyrinth seals-rotor system is investigated, where the low-frequency vibration of steam turbines can be caused by the gas exciting force. The empirical parameters of gas exciting force of the Muszynska model are obtained by using the results of computational fluid dynamics (CFD). Based on the multiple scale method, the 1:2 subharmonic resonance response of the dynamic system is gained by truncating the system with three orders. The transition sets and the local bifurcations diagrams of the dynamics system are presented by employing the singular theory analysis. Meanwhile, the existence conditions of subharmonic resonance non-zero solutions of the dynamic system are obtained, which provides a new theoretical basis in recognizing and protecting the rotor from the subharmonic resonant failure in the turbine machinery.  相似文献   

9.
Like with other types of fluid bearings, rotors supported by floating ring bearings may become unstable with increasing speed of rotation due to self-excited vibrations. In order to study the effects of the nonlinear bearing forces, within this contribution a perfectly balanced symmetric rotor is considered which is supported by two identical floating ring bearings. Here, the bearing forces are modeled by applying the short bearing theory for both fluid films. A linear stability analysis about the static equilibrium position of the rotor shows that for a critical revolution speed the real part of an eigenvalue pair changes its sign. By means of a center manifold reduction it is shown that this destabilization of the steady state is due to a Hopf-bifurcation. Furthermore, the type of this bifurcation is determined as well as the existence and stability of limit-cycles. Notably it is found that depending on the parameters of the floating ring bearing subcritical as well as supercritical bifurcations may occur. Additionally, the analytical results obtained from the center manifold reduction are compared to numerical results by a continuation method. In conclusion, the influences of bearing design parameters on the stability and on the limit-cycles are discussed.  相似文献   

10.
Boedo  S. 《Nonlinear dynamics》1998,16(2):187-202
Extensive numerical simulation studies with a short bearing film model show that a balanced dual offset rotor bearing subjected to a fixed external load can improve bearing performance for load and speed conditions known to produce undesirable half-speed whirl in conventional zero-offset cylindrical systems. For specific values of dimensionless load, offset ratio, and load orientation, parametric changes in speed show that the dual offset bearing can undergo a variety of bifurcations which produce coexisting period 1–4 subharmonic, quasi-periodic, and chaotic attractors, all of which may be driven by lower-order dynamic processes. For a specific set of initial conditions, the transition to chaos via period doubling in the dual offset bearing actually produces lubricant films which are significantly thicker than those found in the corresponding cylindrical system.  相似文献   

11.
Unlike classical bifurcations, border-collision bifurcations occur when, for example, a fixed point of a continuous, piecewise C 1 map crosses a boundary in state space. Although classical bifurcations have been much studied, border-collision bifurcations are not well understood. This paper considers a particular class of border-collision bifurcations, i.e., border-collision period-doubling bifurcations. We apply a subharmonic perturbation to the bifurcation parameter, which is also known as alternate pacing, and we investigate the response under such pacing near the original bifurcation point. The resulting behavior is characterized quantitatively by a gain, which is the ratio of the response amplitude to the applied perturbation amplitude. The gain in a border-collision period-doubling bifurcation has a qualitatively different dependence on parameters from that of a classical period-doubling bifurcation. Perhaps surprisingly, the differences are more readily apparent if the gain is plotted versus the perturbation amplitude (with the bifurcation parameter fixed) than if plotted versus the bifurcation parameter (with the perturbation amplitude fixed). When this observation is exploited, the gain under alternate pacing provides a useful experimental tool to identify a border-collision period-doubling bifurcation.  相似文献   

12.
A variety of border collision bifurcations in a three-dimensional (3D) piecewise smooth chaotic electrical circuit are investigated. The existence and stability of the equilibrium points are analyzed. It is found that there are two kinds of non-smooth fold bifurcations. The existence of periodic orbits is also proved to show the occurrence of non-smooth Hopf bifurcations. As a composite of non-smooth fold and Hopf bifurcations, the multiple crossing bifurcation is studied by the generalized Jacobian matrix. Some interesting phenomena which cannot occur in smooth bifurcations are also considered.  相似文献   

13.
The Hopf and double Hopf bifurcations analysis of asymmetrical rotating shafts with stretching nonlinearity are investigated. The shaft is simply supported and is composed of viscoelastic material. The rotary inertia and gyroscopic effect are considered, but, shear deformation is neglected. To consider the viscoelastic behavior of the shaft, the Kelvin–Voigt model is used. Hopf bifurcations occur due to instability caused by internal damping. To analyze the dynamics of the system in the vicinity of Hopf bifurcations, the center manifold theory is utilized. The standard normal forms of Hopf bifurcations for symmetrical and asymmetrical shafts are obtained. It is shown that the symmetrical shafts have double zero eigenvalues in the absence of external damping, but asymmetrical shafts do not have. The asymmetrical shaft in the absence of external damping has a saddle point, therefore the system is unstable. Also, for symmetrical and asymmetrical shafts, in the presence of external damping at the critical speeds, supercritical Hopf bifurcations occur. The amplitude of periodic solution due to supercritical Hopf bifurcations for symmetrical and asymmetrical shafts for the higher modes would be different, due to shaft asymmetry. Consequently, the effect of shaft asymmetry in the higher modes is considerable. Also, the amplitude of periodic solutions for symmetrical shafts with rotary inertia effect is higher than those of without one. In addition, the dynamic behavior of the system in the vicinity of double Hopf bifurcation is investigated. It is seen that in this case depending on the damping and rotational speed, the sink, source, or saddle equilibrium points occur in the system.  相似文献   

14.
In this paper, bifurcation trees of period-3 motions to chaos in the periodically forced, hardening Duffing oscillator are investigated analytically. Analytical solutions for period-3 and period-6 motions are used for the bifurcation trees of period-3 motions to chaos. Such bifurcation trees are based on the Hopf bifurcations of asymmetric period-3 motions. In addition, an independent symmetric period-3 motion without imbedding in chaos is discovered, and such a symmetric period-3 motion possesses saddle-node bifurcations only. The switching of symmetric to asymmetric period-3 motions is completed through saddle-node bifurcations, and the onset of asymmetric period-6 motions occurs at the Hopf bifurcations of asymmetric period-3 motions. Continuously, the onset of period-12 motions is at the Hopf bifurcation of asymmetric period-6 motions. With such bifurcation trees, the chaotic motions relative to asymmetric period-3 motions can be determined analytically. This investigation provides a systematic way to study analytical dynamics of chaos relative to period-m motions in nonlinear dynamical systems.  相似文献   

15.
Cascades of period-doubling bifurcations have attracted much interest from researchers of dynamical systems in the past two decades as they are one of the routes to onset of chaos. In this paper we consider routes to onset of chaos involving homoclinic-doubling bifurcations. We show the existence of cascades of homoclinic-doubling bifurcations which occur persistently in two-parameter families of vector fields on ?3. The cascades are found in an unfolding of a codimension-three homoclinic bifurcation which occur an orbit-flip at resonant eigenvalues. We develop a continuation theory for homoclinic orbits in order to follow homoclinic orbits through infinitely many homoclinic-doubling bifurcations.  相似文献   

16.
Fractal basin boundaries in a two-degree-of-freedom nonlinear system   总被引:1,自引:0,他引:1  
The final state for nonlinear systems with multiple attractors may become unpredictable as a result of homoclinic or heteroclinic bifurcations. The fractal basin boundaries due to such bifurcations for a four-well, two-degree-of-freedom, nonlinear oscillator under sinusoidal forcing have been studied, based on a theory of homoclinic bifurcation inn-dimensional vector space developed by Palmer. Numerical simulation is used as a means of demonstrating the consequences of the system dynamics when the bifurcations occur, and it is shown that the basin boundaries in the configuration space (x, y) become fractal near the critical value of the heteroclinic bifurcations.  相似文献   

17.
Nonlinear planar oscillations of suspended cables subjected to external excitations with three-to-one internal resonances are investigated. At first, the Galerkin method is used to discretize the governing nonlinear integral–partial-differential equation. Then, the method of multiple scales is applied to obtain the modulation equations in the case of primary resonance. The equilibrium solutions, the periodic solutions and chaotic solutions of the modulation equations are also investigated. The Newton–Raphson method and the pseudo-arclength path-following algorithm are used to obtain the frequency/force–response curves. The supercritical Hopf bifurcations are found in these curves. Choosing these bifurcations as the initial points and applying the shooting method and the pseudo-arclength path-following algorithm, the periodic solution branches are obtained. At the same time, the Floquet theory is used to determine the stability of the periodic solutions. Numerical simulations are used to illustrate the cascades of period-doubling bifurcations leading to chaos. At last, the nonlinear responses of the two-degree-of-freedom model are investigated.  相似文献   

18.
Bifurcations in impact oscillations   总被引:3,自引:0,他引:3  
Models of impact oscillators using an instantaneous impact law are by their very nature discontinuous. These discontinuities geve rise to bifurcations which cannot be classified using the usual tools of bifurcation analysis. However, we present numerical evidence which suggests that these discontinuous bifurcations are just the limits (in some sense) of standard bifurcations of smooth dynamical systems as the impact is hardened. Finally we show how one dimensional maps of the interval with essentially similar characteristics can exhibit the same kinds of bifurcational behaviour, and how these bifurcations are related to standard bifurcations.  相似文献   

19.
This paper presents the nontwisted double-homoclinic-loop bifurcations with resonant eigenvalues in four dimensional vector fields. The Poincaré map is established to solve various problems in double-homoclinic-loop bifurcations with codimension 3. Bifurcation diagrams and bifurcation curves are given. Dedicated to Professor Zhifen Zhang on the occasion of her 80th birthday  相似文献   

20.
We analyze a second-order, nonlinear delay-differential equation with negative feedback. The characteristic equation for the linear stability of the equilibrium is completely solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The bifurcations occurring as the linear stability is lost are investigated by the construction of a center manifold: The nature of Hopf bifurcations and more degenerate, higher-codimension bifurcations are explicitly determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号