首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
Polymeric vesicles have attracted considerable attention in recent years, since they are a model for biological membranes and have versatile structures with several practical applications. In this study, we prepare vesicles from polystyrene-b-poly(acrylic acid) block copolymer in dioxane/water and dioxane/THF/water mixtures. We then examine the ability of additives (such as NaCl, HCl, or NaOH), solvent composition, and hydrophilic block length to control vesicle size. Using turbidity measurements and transmission electron microscopy (TEM) we show that larger vesicles can be prepared from a given copolymer by adding NaCl or HCl, while adding NaOH yields smaller vesicles. The solvent composition (ratio of dioxane to THF, as well as the water content) can also determine the vesicle size. From a given copolymer, smaller vesicles can be prepared by increasing the THF content in the THF/dioxane solvent mixture. In a given solvent mixture, vesicle size increases with water content, but such an increase is most pronounced when dioxane is used as the solvent. In THF-rich solutions, on the other hand, vesicle size changes only slightly with the water concentration. As to the effect of the acrylic acid block length, the results show that block copolymers with shorter hydrophilic blocks assemble into larger vesicles. The effect of additives and solvent composition on vesicle size is related to their influence on chain repulsion and aggregation number, whereas the effect of acrylic acid block length occurs because of the relationship among the block length, the width of the molecular weight distribution, and the stabilization of the vesicle curvature.  相似文献   

2.
The dendrimer concentration dependence of the supramolecular structure formation of polystyrene-block-poly(acrylic acid) in dioxane/THF was investigated as a function of water content. The distribution as well as the localization of the dendrimer units inside the formed aggregates were determined by comparative studies of turbidity measurements and transmission electron microscopy. The strong and specific interactions present between the amine groups of the dendrimer (PAMAM) and the carboxylic acid residues of PAA in the copolymer have a strong influence on the structure formation. The PAMAM concentration as well as the character of the terminal groups of the dendrimer influence the strength of these interactions and consequently affect the structure formation process. As shown by fluorescence quenching experiments, on all supramolecular hierarchical structure levels, and specifically in vesicles, the dendrimer is coated by the PAA chains of the block copolymer due to the strong interactions; since the PAA blocks are connected to the PS blocks, which form the corona, the dendrimer is surrounded by PS chains and is thus encapsulated into the hydrophobic regions of the block copolymer aggregates. A high-resolution transmission electron microscopy image of a micelle is shown, in which the individual dendrimer cores are seen to be localized in the center of these aggregates, and thus, the structure proposed in the previous publication (Kroeger, A.; Li, X.; Eisenberg, A. Langmuir 2007, 23, 10732) is confirmed. Furthermore, the sizes of the resulting aggregates depend on the relative concentration of dendrimer, expressed as RAm/Ac (the ratio of amine to acid groups). With increasing RAm/Ac values, not only the sizes of the micelles but also the vesicle dimensions, especially vesicle wall thicknesses, increase, and this effect suggests the encapsulation of the dendrimer into the vesicle walls. Thus, the constitution of the vesicle structure is determined precisely. This feature allows the potential incorporation of a wide range of species into the vesicle walls or the center of the micelle cores.  相似文献   

3.
Block copolymer vesicles are conveniently prepared directly in water at relatively high solids by polymerization-induced self-assembly using an aqueous dispersion polymerization formulation based on 2-hydroxypropyl methacrylate. However, dynamic light scattering studies clearly demonstrate that addition of small molecule surfactants to such linear copolymer vesicles disrupts the vesicular membrane. This causes rapid vesicle dissolution in the case of ionic surfactants, with nonionic surfactants proving somewhat less destructive. To address this problem, glycidyl methacrylate can be copolymerized with 2-hydroxypropyl methacrylate and the resulting epoxy-functional block copolymer vesicles are readily cross-linked in aqueous solution using cheap commercially available polymeric diamines. Such epoxy-amine chemistry confers exceptional surfactant tolerance on the cross-linked vesicles and also leads to a distinctive change in their morphology, as judged by transmission electron microscopy. Moreover, pendent unreacted amine groups confer cationic character on these cross-linked vesicles and offer further opportunities for functionalization.  相似文献   

4.
The pH and temperature responsive properties of poly(butadiene)107-poly(L-lysine)27 (PB107-P(Lys)27) block copolymer vesicles in aqueous solution were studied using dynamic and static light scattering, circular dichroism spectroscopy and transmission electron microscopy. In this material, the responsiveness comes partially from secondary structure changes within the polypeptide chain. These studies seek to elucidate the effect of these different polypeptide secondary structure changes on the morphology of self-assembled vesicles. It was found that as pH decreases, protonation of P(Lys) side-chain amine groups causes swelling in the vesicles due to the helix-coil transition and associated charge-charge interactions within the corona chains. At high pH and high temperature, P(Lys) corona chains undergo a secondary structure change from alpha-helix to beta-sheet which causes an increase in vesicle size due to the relief of interfacial curvature. This study represents one of the first instances whereby different secondary structure transitions within the same polypeptide have been incorporated into a block copolymer assembly that can be used to produce dual-responsive materials.  相似文献   

5.
Recently, block copolymer vesicles have attracted considerable attention because of their properties in encapsulation and release. To explore their applications in biorelated fields, functionalization of the polymer vesicle is necessary. Herein, a reactive unilamellar vesicle is reported by self-assembly of poly(ethylene oxide)-block-poly(glycidyl methacrylate) copolymer (PEO-b-PGMA) in solution. When water was added into the PEO-b-PGMA solution in THF, unilamellar vesicles were produced. If hydrophobic primary amine additives, such as hexamethylenediamine (HDA) and dodecylamine (DA), were introduced during block copolymer assembling, the vesicular morphology remained unchanged; instead, the amines reacted with the epoxys and the vesicles were fixed by cross-linking. Furthermore, when 3-aminopropyl trimethoxysilane (APS) was applied, the organic/inorganic hybrid vesicles were obtained, which were stable against the solvent change. Therefore, this research not only supplies a new way to fix the vesicular morphology but also a reactive vesicle scaffold for introducing functional species.  相似文献   

6.
Direct formation of giant vesicles from synthetic polypeptides   总被引:2,自引:0,他引:2  
This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography (SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 microm, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 microm. It is expected to be used in drug and gene delivery.  相似文献   

7.
Highly biocompatible pH-sensitive diblock copolymer vesicles were prepared from the self-assembly of a biocompatible zwitterionic copolymer, poly[2-(methacryloyloxy)ethyl phosphorylcholine-block-2-(diisopropylamino)ethyl methacrylate], PMPC-b-PDPA. Vesicle formation occurred spontaneously by adjusting the solution pH from pH 2 to above 6, with the hydrophobic PDPA chains forming the vesicle walls. Transmission electron microscopy (TEM), dynamic laser light scattering (DLS), and UV-visible absorption spectrophotometry were used to characterize these vesicles. Gold nanoparticle-decorated vesicles were also obtained by treating the vesicles with HAuCl4, followed by NaBH4.  相似文献   

8.
A diblock copolymer consisting of tetrahydropyranyl acrylate (THPA) as a pH‐deprotectable block, and a permanently hydrophobic block, methyl acrylate, was synthesized by RAFT polymerization using a quaternary amine functionalized, hydrophilic, RAFT chain transfer agent. The polymer self‐assembled in water to form vesicles with Dh = 130 nm, as determined by DLS and cryogenic transmission electron microscopy. Acid catalyzed deprotection of the THPA units to yield acrylic acid resulted in a vesicle to micelle morphology transition, as evidenced by the decrease in hydrodynamic diameter to Dh = 19 nm and the observation of micelles by dry state transmission electron microscopy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3026–3031  相似文献   

9.
《中国化学快报》2020,31(6):1660-1664
Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc) amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation chain transfer(RAFT) dispersion polymerization of St mediated with poly(N,Ndimethyl acrylamide) trithiocarbonate(PDMAc-TTC-PDMAc) bi-functional macromolecular RAFT agent.It is found that the morphology of the PDMAc-b-PSt-b-PDMAc copolymer micro/nano-objects like spheres,vesicles and vesicle with hexagonally packed hollow hoops(HHHs) wall can be tuned by changing the solvent composition.In addition,vesicles with two sizes(600 nm,264 nm) and vesicles with HHHs features were also synthesized in high solid content systems(30 wt% and 40 wt%,respectively).Besides,as compared with typical AB diblock copolymers(A is the solvophilic,stabilizer block,and B is the solvophobic block),ABA triblock copolymers tend to form higher order morphologies,such as vesicles,under similar conditions.The finding of this study provides a new and robust approach to prepare block copolymer vesicles and other higher order micelles with special structure via PISA.  相似文献   

10.
Small angle neutron scattering (SANS) is used to study the structures formed in water by a diblock copolymer EO6BO11 (having 6 ethylene oxide, EO, and 11 butylene oxide, BO, units). The data show that polymer solutions over a broad concentration range (0.05-20 wt %) contain vesicular structures at room temperature. Interestingly, these vesicles could be formed without any external energy input, such as extrusion, which is commonly required for the formation of other block copolymer or lipid vesicles. The EO6BO11 vesicles are predominantly unilamellar at low polymer concentrations, whereas at higher polymer concentrations or temperatures there is a coexisting population of unilamellar and multilamellar vesicles. At a critical concentration and temperature, the vesicular structures fuse into lyotropic arrays of planar lamellar sheets. The findings from this study are in broad agreement with the work of Harris et al. (Langmuir, 2002, 18, 5337), who used electron microscopy to identify the vesicle phase in the same system.  相似文献   

11.
A new amphiphilic biocompatible diblock copolymer, poly(epsilon-caprolactone)-block-poly(2-aminoethyl methacrylate), PCL-b-PAMA, was synthesized in three steps by (i) ring-opening polymerization of epsilon-caprolactone, (ii) end-group modification by esterification, and (iii) atom transfer radical polymerization (ATRP) of 2-aminoethyl methacrylate hydrochloride (AMA) in its hydrochloride salt form. This copolymer forms block copolymer vesicles with the hydrophobic PCL block forming the vesicle membrane. Unusually, these vesicles are easily prepared by direct dissolution in water without using organic co-solvents, pH adjustment, or even stirring. These vesicles can be stabilized by aqueous sol-gel chemistry using tetramethyl orthosilicate (TMOS) as the silica precursor. It is well-known that cationic polymers can catalyze silica formation, but in this particular case, it seems that the TMOS precursor is solubilized within the hydrophobic PCL membrane. Thus, the neutral membrane actually directs silica formation, rather than the cationic PAMA chains. The final vesicle morphology and the silica content depend on the silicification conditions. Provided that the TMOS/AMA molar ratio does not exceed 10:1, silicification is solely confined within the PCL membrane. At higher ratios, silica nanoparticles (5-12 nm) are also observed on the outer surface of the silicified vesicles. However, these nanoparticles appear to be only weakly adsorbed, since they can be easily removed by dialysis. The mean hydrodynamic diameter of the silicified vesicles varies from 175 to 205 nm with solution pH due to (de)protonation of the externally expressed PAMA chains. Calcination of the silicified vesicles at 800 degrees C leads to the formation of hollow silica particles. 1H NMR, transmission electron microscopy (TEM), dynamic light scattering (DLS), aqueous electrophoresis, and thermogravimetric analysis (TGA) were employed to characterize the vesicles, both before and after silicification.  相似文献   

12.
The effect of glycerol on the permeability of vesicle membranes of a siloxane surfactant, the block copolymer polyethyleneoxide-b-polydimethylsiloxane-polyethyleneoxide, (EO)15-(DMS)15-(EO)15, was studied with freeze-fracture transmission electron microscopy (FF-TEM) and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. The FF-TEM results show that, in pure water, the surfactant can form small vesicles with diameters of less than 25 nm, as well as a few multilamellar vesicles with diameters larger than 250 nm. Gradual substitution of water with glycerol to a glycerol content of 40% leads to significant structural transformations: small vesicles are gradually swollen, and large multilamellar vesicles disappear. A glycerol content of 60% results in the complete disintegration of the vesicles into membrane fragments. PFG-NMR measurements indicate that the vesicle membrane does not represent an effective barrier for water molecules on the NMR time scale; hence, the average residence time of water in the encapsulated state is below tau b = 2 ms. In contrast, the average residence time of glycerol molecules in the encapsulated state can be as large as tau b = 910 ms. The permeability of the vesicle membrane increases with increasing glycerol concentration in the solvent: At a concentration of 40%, the residence time tau b is lowered to approximately 290 ms. After vesicle destruction at higher glycerol concentrations, a small glycerol fraction is still bound by membrane fragments that are formed after the disintegration of the vesicles.  相似文献   

13.
pH-induced release from P2VP-PEO block copolymer vesicles   总被引:4,自引:0,他引:4  
The pH-induced release of hydrophilic dyes from poly(2-vinylpyridine-b-ethylene oxide) (P2VP-PEO) block copolymer vesicles is investigated. The structure of the vesicles is characterized using small-angle neutron scattering (SANS) and cryo-electron microscopy (cryo-TEM). A decrease of the pH below 5 leads to protonation and dissolution of the poly-2-vinylpyridine blocks which induces rupture and dissolution of the vesicle membrane. Details of the rupture, dissolution, and release process are studied by fluorescence video microscopy, gel electrophoresis, and high-performance ultrafiltration.  相似文献   

14.
We describe polymersomes with ionic liquid interiors dispersed in water. The vesicles are prepared via a simple and spontaneous migration of poly(butadiene-b-ethylene oxide) (PB-PEO) block copolymer vesicles from a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), to water at room temperature. As PB is insoluble in both water and [EMIM][TFSI] and PEO is well solvated in both media, the vesicles feature a PB membrane with PEO brushes forming both interior and exterior coronas. The robust and stable PB-PEO vesicles migrate across the liquid-liquid interface with their ionic liquid interiors intact and form a stabilized aqueous dispersion of vesicles enclosing microscopic ionic liquid pools. The nanostructure of the vesicles with ionic liquid interiors dispersed in water is characterized by direct visualization using cryogenic transmission electron microscopy. Upon heating, the vesicles can be quantitatively transferred back to [EMIM][TFSI], thus enabling facile recovery. The reversible transport capability of the shuttle system is demonstrated by the use of distinct hydrophobic dyes, which are selectively and simultaneously loaded in the vesicle membrane and interior. Furthermore, the fluorescence of the loaded dyes in the vesicles enables probing of the microenvironment of the vesicular ionic liquid interior through solvatochromism and direct imaging of the vesicles using laser scanning confocal microscopy. This vesicle system is of particular interest as a nanocarrier or nanoreactor for reactions, catalysis, and separations using ionic liquids.  相似文献   

15.
Molecular‐level understanding of the vesicular structure and formation process is beneficial for potential vesicle applications, especially in drug delivery. In this article, coarse‐grained molecular dynamics simulation was used to study the self‐assembly behavior of amphiphilic poly(acrylic acid)‐b‐polystyrene copolymers in water at different concentrations and PS/PAA block ratios. It was found that various spherical and tube‐like vesicles formed at PS/PAA 3:3 and 4:2. For spherical vesicles, analysis of vesicular structure indicated that the cavity size was influenced by copolymer concentration and wall thickness by the block ratio. Tube‐like vesicle was formed via the fusion of two spherical vesicles, and a key factor for this morphology is polymer movements between inner and outer layer. This simulation study identifies the key factors governing vesicle formation and structure, and provides a guidance to design and prepare various vesicles for wide applications in drug delivery. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1220–1226  相似文献   

16.
It is an important challenge to balance the degradability and stability of polymer vesicles. We report a thermo-responsive vesicle based on poly[(N-isopropyl acrylamide-stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin)-b-(L-glutamic acid)] [P (NIPAM45-stat-CMA5)-b-PGA42] diblock copolymer, which was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and ring-opening polymerization (ROP). The membrane of the vesicle consists of thermo-responsive PNIPAM and photo-cross-linkable PCMA. The PGA chains in the vesicle coronas can colloidally stabilize the vesicles in water and can be postfunctionalized for further applications. Transmission electron microscopy and dynamic light scattering studies confirmed the formation of vesicles. Overall, we prepared a new functional thermo-responsive vesicle based on polypeptide copolymers that may be used as nanocarriers for the facile loading of a range of molecules in future.  相似文献   

17.
The synthesis of a block codendrimer (g3-PBE-b-g3-PMDC), composed of a third-generation poly(benzyl ether) (PBE) monodendron and an aliphatic polyether (PMDC) monodendron is reported. In THF/diiospropyl ether (1:1) the PMDC block functions as a "hydrophilic" block, while the PBE acts as a "hydrophobic" block. The codendrimer can form interdigitated layers leading to vesicle formation. Tapping mode atomic force microscopy (AFM), dynamic light scattering (DLS), and transmission electron microscopy (TEM) were used to characterize the vesicles. The effect of molecular architecture on the formation of the interdigitated layers and vesicles was studied.  相似文献   

18.
A new type of shape-persistent, pH-responsive vesicle was prepared by the self-assembly of a novel poly(ethylene oxide)-block-poly[2-(diethylamino)ethyl methacrylate-stat-3-(trimethoxysilyl)propyl methacrylate], PEO-b-P(DEA-stat-TMSPMA), copolymer. Vesicles were formed spontaneously in aqueous THF solution, with the hydrophilic PEO chains forming the corona and the pH-sensitive P(DEA-stat-TMSPMA) blocks being located in the membrane walls. Hydrolytic cross-linking within the hydrophobic membrane walls fixed the vesicle morphology. The resulting colloidally stable vesicles were characterized by 1H NMR, transmission electron microscopy (TEM), dynamic laser light scattering (DLS), and stopped-flow fluorescence experiments. The latter technique indicated that the permeability of the vesicle walls was sensitive to the pH of the aqueous solution, as expected. Gold-decorated vesicles were obtained by in situ reduction of AuCl4- anions to produce gold nanoparticles within the vesicle walls. (Yellow, hydrophilic PEO; green, pH-responsive DEA residues; blue, hydrolytically self-cross-linkable TMSPMA residues.)  相似文献   

19.
The stability of nanocarriers in physiological environments is of importance for biomedical applications. Among the existing crosslinking approaches for enhancing the structural integrity and stability, photocrosslinking has been considered to be an ideal crosslinking chemistry, as it is non-toxic and cost-effective, and does not require an additional crosslinker or generate by-products. Meanwhile, most current temperature-responsive nanocarriers are designed and synthesized for drug release by increasing temperature. However, heating may induce cell damage during triggered drug release. Therefore, lowering temperature-triggered nanocarriers need to be developed for drug delivery and safe drug release during therapeutic hypothermia. In this study, we prepared an amphiphilic block copolymer, poly(ethylene oxide)-block-poly[N-isopropyl acrylamide-stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin]-block-poly(acrylic acid) [PEO43-b-P(NIPAM71-stat-CMA8)-b-PAA13], by reversible addition fragmentation chain transfer (RAFT) polymerization. Successful synthesis of the polymer was verified by proton nuclear magnetic resonance (1H NMR) and size exclusion chromatography (SEC). The copolymers self-assembled into vesicles in aqueous solution, with the P(NIPAM-stat-CMA) block forming an inhomogeneous membrane and the PEO chains and PAA chains forming mixed coronas. The cavity of this vesicle could be utilized to load hydrophilic drugs. The CMA groups could undergo photocrosslinking and enhance the stability of vesicles in biological applications, and the PNIPAM moiety endowed the vesicle with temperature-responsive properties. Upon decreasing the temperature, the vesicles swelled and released the loaded drugs. The size distribution and morphology of the vesicles were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) experiments. After staining with phosphotungstic acid, the hollow morphology of the vesicles with a phase-separated inhomogeneous membrane was observed by TEM and SEM. The DLS results showed that the hydrodynamic diameter of the vesicles was 208 nm and the polydispersity was 0.075. The size of the vesicles observed by TEM was between 180 and 200 nm, which was in accordance with that measured by DLS. To verify the drug loading capacity and controlled release ability of the vesicle, a water-soluble antibiotic was encapsulated in the vesicles. The experimental results showed that the drug loading content was 10.4% relative to the vesicles and the drug loading efficiency was approximately 32.7%. For vesicles containing the same amount of antibiotics, the release rate at 25 ℃ was 35% higher than that at 37 ℃ after 12 h in aqueous solution. Overall, this photocrosslinked vesicle with temperature-responsive properties facilitates lowering temperature-triggered drug release during therapeutic hypothermia.  相似文献   

20.
Polymeric vesicle formation is dictated by the mutual diffusion of water into the bulk block copolymer and vice versa. The hydration of three poly(ethylene oxide)-co-poly(butylene oxide) copolymers with different molecular weights has been monitored both macroscopically (confocal laser scanning microscopy) and microscopically (small-angle X-ray scattering). Both methods have revealed that the amphiphilic block copolymers swell in water following two qualitatively different growth regimes. Initially, water and copolymer diffuse into each other following a subdiffusional growth as the result of a molecular-level arrangement of the amphiphilic membranes that comprise the swollen copolymer. After a critical time, which is exponential in polymer molecular weight, the amphiphilic membranes reach their equilibrium morphology and as a consequence the growth starts to follow Fickian diffusion. The complex hydration kinetics dictate the phases formed at the interface between the amphiphilic copolymer and water. Upon hydration of simple amphiphiles, the amphiphilic film swells and the concentration gradient at the interface with water gradually drops to zero. This strongly affects the complex driving forces that control vesicle formation. Indeed, to form vesicles, an energy barrier has to be overcome, and therefore a constant concentration gradient is required. We show, by enhancing the hydration kinetics via an ac field, how the interface concentration gradient is kept constant and the magnitude of this gradient dictates the final size of the vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号