首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The thin films of TiO2 doped by Sn or Nb were prepared by sol–gel method under process control. The effects of Sn and Nb doping on the structural, optical and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD) high resolution transmission electron microscopy and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methylene blue under UV and Visible radiation. The results show that the photocatalytic activity of the Sn-doped TiO2 thin film have a larger degradation efficiency than Nb-doped TiO2 under visible light, but under UV light photocatalytic activity of the Nb-doped TiO2 thin film is better.  相似文献   

2.
A novel sol–gel technique using the PTA (peroxo titanic acid) sol as precursor for the fabrication of TiO2 photocatalytic thin film is introduced in this paper. The peroxo titanic acid sol was synthesized from titanyl sulfate (TiOSO4), ammonia and peroxide solution (H2O2). The transparent and porous TiO2 thin film was prepared via a sol–gel technique using PTA sol and polyethylene glycol (PEG) as precursor and template, respectively. The TiO2 thin film samples were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectrophotometry (UV–vis), X-ray photoelectron spectrum (XPS) and thermogravimetry and differential thermal analysis (TG-DTA) technique. The PTA sol displayed amorphous TiO2 below 100 °C. The anatase phase formed at 200 °C to 700 °C. The crystallinity of anatase phase was improved with increasing temperature. The anatase crystals on the surface of TiO2 film were strip-like, the size being about 100 nm in length and 40 nm in diameter. Addition of PEG to the PTA sol developed porous structures in the film and changed the size and shape of the particles. The surface of the film contained Ti, O and C elements and Na element that diffused into the film from the glass substrate. The photocatalytic performance of TiO2 film was tested for the degradation of 10 mg/L methyl orange. The degradation of methyl orange solution reached 98.9% after irradiated for 180 min under UV light. The porous TiO2 thin film exhibited high photocatalytic activity towards degrading methyl orange.  相似文献   

3.
Monolayer polystyrene spheres (∼400 nm) array templates were assembled orderly on clean glass substrates by dip-drawing method from emulsion of PS and porous TiO2 thin films were prepared by using sol-dipping template method to fill TiO2 sol into the interstices among the close-packed PS templates and then annealing to remove the PS templates. The effects of TiO2 precursor sol concentration and dipping time in sol on the porous structure of the thin films were studied. The results showed pore size of the ordered TiO2 porous thin film depended mainly on PS size and partly on TiO2 sol concentration. The shrinkage of pore diameter was about 10% for 0.2 M and 20% for 0.4 M TiO2 sol concentrations. X-ray diffraction (XRD) spectra indicated the porous thin film was anatase structure. The transmittance spectrum showed that optical transmittance of the porous thin film kept above 70% beyond the wavelength of 430 nm. Optical band-gap of the porous TiO2 thin film (fired at 550∘;C) was 3.12 eV.  相似文献   

4.
TiO2 and MgF2 thin films were prepared by sol–gel processing. Their microstructure was investigated by scanning electron microscopy, X-ray diffraction and ellipsometric porosimetry as a function of the number of coating-firing cycles with different single layer thicknesses. TiO2/MgF2 multilayers were processed in different stacking sequences; the nucleation of the subsequent material was correlated to the underlying crystal structure and the respective film morphology. It was found that dense crystalline MgF2 films on glass can be manufactured by homoepitaxial growth of multiple thin layers. On an underlying TiO2 layer the effect of densification and crystallization is increased. In the reverse film order no such effect could be observed.  相似文献   

5.
In this study, preparation of Sn and Nb co-doped TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process have been investigated. The effects of co-doping content on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD), field emission SEM (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy (XPS). XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania Rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The prepared co-doped TiO2 photo-catalyst films showed optical absorption edge in the visible light area and exhibited excellent photo-catalytic ability for degradation of methylene blue (MB) solution under solar irradiation. Comparison with undoped and Sn or Nb-doped TiO2, codoped TiO2 shows an obviously higher catalytic activity under solar irradiation.  相似文献   

6.
A titanium dioxide sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. The sol was prepared by a process where HCl was added to a gel of hydrated titanium oxide to dissolve it. The resulting aqueous titanic acid solution was heated to form titanium dioxide sol. The effects of preparation parameters were investigated. TiCl4 was slowly added to distilled water at 5°C. Aqueous solution of sodium hydroxide was added to adjust the pH of the system to 8–12. After aging for a period of time, the peptized sol was filtered and sufficiently washed. The filtered cake was repulped in water. Hydrochloric acid was slowly added to the solution with stirring. After condensation reaction and crystallization, a transparent sol with suspended TiO2 was formed. XRD results show that the crystalline phase was anatase. The suspended TiO2 particles were rhombus primary particles with the major axis ca. 20 nm and the minor axis ca. 5 nm. The TiO2 particles prepared at pH 8 had the largest surface area of 141 cm3/g and it was microporous. The compositions of the solution which yielded the smallest suspended TiO2 particles were TiO2:HCl (35% HCl) = 1:1 (molar ratio), concentration of TiO2 = 10%. Hydroxypropyl cellulose with viscosity of 150–400 cps was added as a dispersant. The sol was excellent in dispersibility and long-term stability. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The dip-coating on glass can be less than three times to have one monolayer TiO2. The transparent TiO2 thin film had strong hydrophilicity after being illuminated by UV light.  相似文献   

7.
One‐layer and two‐layer nano‐TiO2 thin films were prepared on the surface of common glass by sol–gel processing. Water contact angle, surface morphology, tribological properties of the films before and after ultraviolet (UV) irradiation were investigated using DSA100 drop shape analyzer, scanning probe microscopy (SPM), SEM and universal micro‐materials tester (second generation) (UMT‐2MT) friction and wear tester, respectively. The stored films markedly resumed their hydrophilicity after UV irradiation. But UV irradiation worsened tribological properties of the films. After the film was irradiated by UV, the friction coefficient between the film and GCr15 steel ball increased about 10–50% and its wear life shortened about 20–90%. Abrasive wear, brittle break and adherence wear are the failure mechanisms of nano‐TiO2 thin films. It was believed that UV irradiation increased surface energy of the film and then aggravated adherence wear of the film at initial stage of friction process leading to severe brittle fracture and abrasive wear. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, Sn and Nb co-doped TiO2 were coated on glazed porcelain substrates via sol–gel dip coating method. Field emission-scanning electron microscopy, transmission electron microscopy, and UV–vis spectrophotometer were used to evaluate thickness and optical properties of the thin films. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. Water contact angle on the film surfaces was measured by a contact angle analyzer under solar light irradiation. The optical results indicated that Sn/Nb dopant in TiO2 thin film changed the absorption edge from ultraviolet to visible light and exhibited excellent photo-catalytic ability for degradation of methylene blue solution under solar irradiation. Wettability results indicated that Sn and Nb dopant ions had significant effect on the hydrophilicity property of thin films.  相似文献   

9.
A comparative study of TiO2 powders prepared by sol–gel methods is presented. Titanium tetraisopropoxide was used as the precursor for the sol–gel processes. The effects of the annealing treatment on phase, crystallite size, porosity and photodegradation of dyes (methyl orange and methylene blue) were studied. The phase structure, microstructure and surface properties of the films were characterized by using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The X-ray diffraction was used for crystal phase identification, for the accurate estimation of the anatase–rutile ratio and for the crystallite size evaluation of each polymorph in the samples. It was found that the only TiO2 anatase phase of the synthesized TiO2 develops below 500 °C, between 600 and 800 °C the anatase coexist with rutile and above 800 °C only the rutile phase was found in the samples. Attention has been paid not only to crystal structures, but also to the porosity, the particle size and the photocatalytic properties. However, the annealing temperature was found to have significant influence on the photocatalytic properties. Different TiO2 doctor blade thin films were obtained mixing the sol gel powder (100% anatase) and TiO2 Aldrich with TiO2 Degussa P25. The surfactant (Triton X100 or sodium dodecyl sulfate) affects the packing density of the particles during deposition and the photocatalytic degradation efficiency of the dyes. The photocatalytic degradation kinetics of methyl orange and methylene blue using TiO2 thin film were investigated.  相似文献   

10.
《Electroanalysis》2006,18(4):379-390
Combining vapor‐surface sol‐gel deposition of titania with alternate adsorption of oppositely charged iron heme proteins provided ultrathin {TiO2/protein}n films with reversible voltammetry extended to 15 TiO2/protein bilayers, more than twice that of more conventional polyion‐protein or nanoparticle‐protein films made by alternate layer‐by‐layer adsorption. Catalytic activity toward O2, H2O2, and NO was also improved significantly compared to the conventionally fabricated films. The method involves vaporization of titanium butoxide into thin films of water, forming porous TiO2 sol‐gel layers. Myoglobin (Mb), hemoglobin (Hb), and horseradish peroxidase (HRP) were assembled by adsorption alternated with the vapor‐deposited TiO2 layers. Improved electrochemical and catalytic performance may be related to better film permeability leading to better mass transport within the films, as suggested by studies with soluble voltammetric probes, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrochemical and electrocatalytic activity of the films can be controlled by tailoring the amount of water with which the metal alkoxide precursor vapor reacts and the number of bilayers deposited in the assembly.  相似文献   

11.
In this study, very small (2–5 nm) TiO2 nanoparticles were synthesized in an aprotic solvent, N,N-dimethylacetamide, via hydrolysis and condensation of titanium alkoxide at room temperature. The synthesized TiO2 sol showed 30 days of storage stability and could be used to prepare high-refractive-index TiO2-polyimide hybrid thin films by an ex-situ method that involved a spin coating and multistep baking process. The field emission scanning electron microscope image showed a flat and uniform morphology of the hybrid thin film. TiO2 domains were in the nanometer range, thus avoiding light scattering. The refractive index at 633 nm of the hybrid thin film reached 2.05, which suggested potential applications of the film to anti-reflective coatings and optical waveguides.  相似文献   

12.
Synthesis of titanate nanotubes (TNTs) from sol–gel derived amorphous TiO2 thin films under moderate hydrothermal condition has been reported. TNTs from film possess a tubular morphology that is the same crystalline phase as one synthesized from TiO2 powder so far. TNTs obtained in this study are not entangled one another but oriented and isolated on the substrate. Growth of highly oriented TNTs is observed in micro grooves of amorphous TiO2 thin film. Their orientation is also maintained with the growth of TNTs.  相似文献   

13.
Transparent semiconducting thin films of titanium oxide (TiO2) were deposited on glass substrates by the sol–gel method and spin-coating technique. The physical properties of the prepared films were studied as a function of the number of spun-cast layers. The microstructure and surface morphology of the TiO2 films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), with respect to the film thickness. The XRD analysis reveals that the films are polycrystalline with an anatase crystal structure and a preferred grain orientation in the (101) direction. The morphological properties were investigated by AFM, which shows a porous morphology structure for the films. The optical properties of the films were characterized by UV–Visible spectrophotometry, which shows that the films are highly transparent in the visible region and their transparency is slightly influenced by the film thickness, with an average value above 80 %. The dependence of the refractive index (n), extinction coefficient (k), and absorption coefficient (α) of the films on the wavelength was investigated. A shift in the optical band gap energy of the films from 3.75 to 3.54 eV, as a function of the film thickness, has been observed.  相似文献   

14.
This paper explores the possibility of making coatings with super friction-reducing and wear protection properties by using both sol–gel and self-assembling techniques. The thin film of TiO2 was firstly prepared on glass substrates via a sol–gel method, followed by sintering at 480°C. The self-assembled monolayer of Fluoroalkylsilane (FAS) were then prepared on TiO2 thin film to obtain TiO2–FAS dual-layer film. The contact angle measurement and X-ray photoelectron spectroscopy were used to determine the wetting behavior and chemical structure of films, respectively. The friction behavior of films sliding against a steel ball was examined on a macro friction and wear tester. It is shown that FAS is strongly adsorbed on sol–gel derived TiO2 thin film, making it strongly hydrophobic. Good friction-reducing and wear protection behavior is observed for the glass substrate after duplex surface-modification with sol–gel TiO2 and top layer of FAS.  相似文献   

15.
Hexagonal barium titanate (HBT) thin films were prepared on borosilicate plate substrates via sol–gel method using the dip-coating process. The structure, texture and morphology of the thin film were analyzed by X-ray diffraction, atomic force microscopy, nanoindentation technique, and transmission electron microscopy. The results showed that the thin film annealed at 700?°C crystallized with BaTiO3 hexagonal phase and traces of Ba2TiO4 (secondary phase). The nanoparticles and the RMS roughness of the sample treated at 700?°C presented high values when compared with those thermally treated at lower temperatures. The hardness and Youngs??modulus of the thin films increased with increasing in grain size, and the thin film annealed at 700?°C with crystallite size about 10?nm presented multiple “pop-in??events during nano-indentation loading curves. The annealing temperature, growth size and surface roughness were discussed in connection with the HBT mechanical properties.  相似文献   

16.
In this work the efficiency and physicochemical details of a thin film produced by help of a microwave assisted sol gel technique is compared to different commercial powders (Degussa P25 and Hombikat UV100) deposited on glass substrates. Furthermore, a supercritical produced TiO2 powder (SC 134) was included in the comparison.The prepared TiO2 films were characterized using XRD, XPS, AFM, DSC and DLS. The photocatalytic activity was determined using stearic acid as a model compound. Investigation of the prepared films showed that the Degussa P25 film and the sol–gel film were the most photocatalytic active films. The activity of the films was found to be related to the crystallinity of the TiO2 film and the amount of surface area and surface hydroxyl groups. Based on the XPS investigation of the films before and after UV irradiation it was suggested that the photocatalytic destruction of organic matter on TiO2 films proceeds partly through formation of hydroxyl radicals which are formed from surface hydroxyl groups created by interactions between adsorbed water and vacancies on the TiO2 surface. Furthermore a correlation between the amount of OH groups on the surface of the different TiO2 films and the photocatalytic activity was found.  相似文献   

17.
This research work presents the efficiency of the TiO2 and Ag–TiO2 thin films prepared by the sol–gel method and coated onto the surface of 304 stainless steel sheets used in the photocatalytic nitrate reduction processes. The Ag–TiO2 thin films had the weight by weight (w/w) ratio of Ag+/TiO2 of 0.1% as Ag atom. The XRD results showed that the crystalline phase structure of TiO2 on the Ag–TiO2 thin films was anatase. The optical band gaps of the TiO2 and 0.1% Ag–TiO2 thin films were respectively 3.27 and 2.70 eV, while the surface of the prepared catalysts was hydrophobic with the respective average water contact angles of 94.8° and 118.5° for the TiO2 and 0.1% Ag–TiO2 thin films. The net efficiencies of photocatalytic nitrate reduction of TiO2 and 0.1% Ag–TiO2 were 41.4% and 70.0%, respectively. The loading of Ag only influenced the nitrate removal efficiency without affecting the stoichiometric ratio of formate to nitrate. The net stoichiometric ratio of formate to nitrate of all experiments was 2.8:1.0, which is close to the stoichiometric ratio of 2.5:1.0 of the nitrate reduction to nitrite and then to nitrogen gas.  相似文献   

18.
Nanostructured TiO2 coating films on silica glass substrates were prepared by the assembly technique. TiO2 colloids were synthesized employing the sol‐gel method using TiCl4 as a precursor. The effect on the surface structures which was caused by the polyethylene glycol (PEG) added to the precursor solution and the photocatalytic activity were studied. The experimental results showed that the cobble‐like TiO2 coating films were synthesized at 500 °C. On the surface of the samples, TiO2 films exhibited uniform shape and a narrow size distribution. The result of proper PEG added to the precursor solution led to the decreasing of the size of TiO2 particles and the increasing of the surface area of the samples. The photocatalytic activity of TiO2 films with PEG was higher than that of samples without PEG.  相似文献   

19.
Photocatalytic degradation of glyphosate contaminated in water was investigated. The N‐doped SnO2/TiO2 films were prepared via sol–gel method, and coated on glass fibers by dipping method. The effects of nitrogen doping on coating morphology, physical properties and glyphosate degradation rates were experimentally determined. Main variable was the concentration of nitrogen doping in range 0–40 mol%. Nitrogen doping results in shifting the absorption wavelengths and narrowing the band gap energy those lead to enhancement of photocatalytic performance. The near optimal 20N/SnO2/TiO2 composite thin film exhibited about two‐ and four‐folds of glyphosate degradation rates compared to the undoped SnO2/TiO2 and TiO2 films when photocatalytic treatment were performed under UV and solar irradiations, respectively, due to its narrowest band gap energy (optical absorption wavelength shifting to visible light region) and smallest crystallite size influenced by N‐doping.  相似文献   

20.
Thin sol–gel TiO2 layers deposited on the conductive ITO glass by means of three various deposition techniques (dip-coating, inkjet printing and spray-coating) were used as photoanode in the three-compartment electrochemical cell. The thin TiO2 films were treated at 450 °C and after calcination all samples possessed the crystallographic form of anatase. The relationship between surface structure and photo-induced conductivity of the nanostructured layers was investigated. It was found that the used deposition method significantly influenced the structural properties of prepared layers; mainly, the formation of defects and their quantity in the prepared films. The surface properties of the calcined layers were determined by XRD, Raman spectroscopy, SEM, AFM, UV–Vis analyses and by the optical microscopy. The photo-induced properties of nanoparticulate TiO2/ITO photoanode were studied by electrochemical measurements combined with UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号