首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase formation processes in the systems Ln2O3-SrO-Fe2O3 (Ln = La, Nd) in air in the temperature range 1200–1500°C were studied. The synthesis of the complex ferrites La2SrFe2O7 and Nb2SrFe2O7 involves the formation of the intermediate compounds LnFeO3 and LnSrFeO4 and occurs by the same mechanism as the synthesis of the corresponding aluminates, but much faster.  相似文献   

2.
Glasses of the SiO2–P2O5–K2O–MgO–CaO–B2O3 system acting as nutrients carriers in the soil environment were synthesised by the melt-quenching technique. Thermal properties were studied using DTA/DSC methods and the influence of B2O3 and P2O5 content on thermal stability and crystallization process of these glasses was examined. The structure of the glass network was characterized by FTIR, 31P, and 11B MAS NMR. The chemical activity of the glasses in the 2 mass% citric acid solution was measured by the ICP-AES method. The analysis indicated that the formation of P–O–B units with chemically stable tetrahedral borate groups decreases the glass solubility in conditions simulating the soil environment.  相似文献   

3.
Ferroelectric SrBi2Ta2O9 nanotubes were fabricated by sol–gel dipping template technique and characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. They had a single orthorhombic perovskite structure, and most of SBT nanotubes showed highly preferential crystal growth along the [115] orientation. FE-SEM and TEM investigations showed that nanotubes have smooth wall morphologies and well-defined diameters corresponding to the diameter of the applied template. From HRTEM results, the clear lattice fringes indicated that the nanotubes are structurally uniform and well crystallized. The growth mechanisms of SBT nanotubes into the AAO templates were explored.  相似文献   

4.
Thermodynamic properties of melts of the CaB2O4-CaSiO3 and Ca2B2O5-CaSiO3 systems were determined by the method of high-temperature mass-spectrometry. The melts of these systems are characterized by negative deviations from the ideal behavior at 1800 K.  相似文献   

5.
Summary Specific heats on the single crystals of Sr2Nb2O7, Sr2Ta2O7 and (Sr1-xBax)2Nb2O7 were measured in a wide temperature range of 2-600 K. Heat anomalies of a λ-type were observed at the incommensurate phase transition of TINC (=495 K) on Sr2Nb2O7 and at the super-lattice phase transition of TSL (=443 K) on Sr2Ta2O7; the transition enthalpies and the transition entropies were estimated. Furthermore, a small heat anomaly was observed at the low temperature ferroelectric phase transition of TLOW (=95 K) on Sr2Nb2O7. The transition temperature TLOW decreases with increasing Ba content x and it vanishes for samples of x>2%.  相似文献   

6.
The non-isothermal decomposition kinetics of 4Na2SO4·2H2O2·NaCl have been investigated by simultaneous TG-DSC in nitrogen atmosphere and in air. The decomposition processes undergo a single step reaction. The multivariate nonlinear regression technique is used to distinguish kinetic model of 4Na2SO4·2H2O2·NaCl. Results indicate that the reaction type Cn can well describe the decomposition process, the decomposition mechanism is n-dimensional autocatalysis. The kinetic parameters, n, A and E are obtained via multivariate nonlinear regression. The n th-order with autocatalysis model is used to simulate the thermal decomposition of 4Na2SO4·2H2O2·NaCl under isothermal conditions at various temperatures. The flow rate of gas has little effect on the decomposition of 4Na2SO4·2H2O2·NaCl.  相似文献   

7.
SnO2/B2O3 samples were produced by a reaction between SnCl4, H3BO3, and (NH2)2CO in a boiling aqueous solution. The Sn: B molar ratio in these samples was 1: 1, 1: 2, and 1: 3. The phase composition and degree of crystallinity of these materials was studied. The surface acidity of the samples was analyzed by the method based on a temperature-programmed reaction of dehydration of 2-methyl-3-butyn-2-ol. Thermal transformations of SnO2/B2O3 samples were examined by means of differential-thermal analysis.  相似文献   

8.
Erbium stannate Er2Sn2O7 and thulium stannate Tm2Sn2O7 with a pyrochlore-type structure were produced by solid-phase synthesis by calcining stoichiometric mixtures of the respective oxides in air at 1473 K for 240 and 200 h. The high-temperature heat capacity of Er2Sn2O7 and Tm2Sn2O7 was studied by differential thermal calorimetry at 353–1000 K. From the experimental dependences C P = f(T), the thermodynamic functions (enthalpy change, entropy change, and reduced Gibbs free energy) of oxide compounds were calculated.  相似文献   

9.
The processes of nucleation of Li2O-Al2O3-SiO2 glasses with TiO2 and TiO2+ZrO2 as nucleating agents were discussed. The DTA peak temperature and DTA peak height shown a strong dependence on the nucleation temperature in the glass with TiO2, while in the glass with TiO2+ZrO2 this tendency was small. The optimum nucleation temperatures were 745 and 760°C for two glasses. It suggested that with TiO2+ZrO2 as nucleating agents, the crystallization had lower sensitivity for nucleation temperature, and the glass had higher nucleation efficiency than with TiO2.  相似文献   

10.
The effects of the chelating agent on the thermal evolution of SrBi2Ta2O9 precursor powders were investigated. The precursor solutions were prepared from non-hydrolyzing precursors of bismuth and strontium and a tantalum alkoxide. The utilization of diethanolamine or triethanolamine as chelating agent was found to produce the segregation of metallic bismuth in the as-prepared powders, which led to the formation of a multiphase system. On the other hand, acetoin, one of the α-hydroxyketones, showed outstanding characteristics for the low-temperature synthesis of SrBi2Ta2O9: elimination of residual organics at low temperature, an earlier onset of crystallization, and no segregation of secondary phases during the whole crystallization process.  相似文献   

11.
Optimum conditions for synthesizing monoclinic and triclinic Mg2B2O5 compounds by high-temperature solid-state reactions were investigated. Mixtures composed of boric acid and magnesium oxide at MgO:B2O3 mole ratios of 1:0.25, 1:0.5 and 1:1.5 were heated for 1 hour at temperatures between 600–1050°C and the formed phases were identified by XRD analysis. Monoclinic Mg2B2O5 was formed by heating at 850°C for 4 hours together with minimum amounts of triclinic Mg2B2O5, while triclinic Mg2B2O5 was formed as a single phase at 1050°C for the same reaction time. The products obtained at optimum conditions were subjected to a series of tests to determine their chemical compositions, particle size distributions, surface area values, IR spectra and TG/DTA patterns.   相似文献   

12.
Lithium aluminum silicate (LAS) glasses of compositions (wt%) 10.6Li2O–71.7SiO2–7.1Al2O3–4.9K2O–3.2B2O3–1.25P2O5–1.25TiO2 were prepared by the melt quench technique. Crystallization kinetics was investigated by the method of Kissinger and Augis–Bennett using differential thermal analysis (DTA). Based on the DTA data, glass ceramics were prepared by single-, two-, and three-step heat treatment schedules. The interdependence of different phases formed, microstructure, thermal expansion coefficient (TEC) and microhardness (MH) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo-mechanical analysis (TMA), and microhardness (MH) measurements. Crystallization kinetics revealed that Li2SiO3 is the kinetically favored phase with activation energy of 91.10 kJ/mol. An Avrami exponent of n = 3.33 indicated the dominance of bulk crystallization. Based upon the formation of phases, it was observed that the two-stage heat treatment results in highest TEC glass ceramics. The single-step heat treatment yielded glass ceramics with the highest MH.  相似文献   

13.
The enthalpies of dilution, Δdil H m, have been measured for LiCl+Li2B4O7+H2O system at T=298.15 K by using a RD496-III microcalorimeter. A suitable measurement method was used to obtain the better data of the enthalpies of dilution for the ternary mixing solutions to low concentrations. The relative apparent molar enthalpies, L ϕ, have been determined and the relationships between L ϕ and ionic strength I at different molal fractions of Li2B4O7 were obtained. The effect of the borate Li2B4O7 on the heat properties for the studied system was discussed.  相似文献   

14.
Phase relations in the Zn2V2O7-Cu2V2O7 system were studied by high-temperature X-ray diffraction and differential thermal analysis. The major phase constituents of the system are solid solutions based on Zn2V2O7 and Cu2V2O7 polymorphs and their coexistence regions. The generation of α-Zn2 − 2x Cu2x V2O7 solid solution, where 0 ≤ x ≤ 0.30, leaves almost unchanged the stabilization temperature of the high-temperature zinc pyrovanadate phase. The α-Cu2 − 2x Zn2x V2O7 homogeneity range is 5 mol % Zn2V2O7. In the range 0.050 ≤ x ≤ 0.09 from 20 to ∼ 620°C, there is the two-phase field of α-Cu2V2O7 and β-Cu2V2O7 base solid solutions. At still higher temperatures, β-Zn2 − 2x Cu2x V2O7 and α-Cu2 − 2x Zn2x V2O7 coexist in the mixed-phase region. β-Zn2 − 2x Cu2x V2O7 solid solution, where 0 ≤ x ≤ 0.30, exists above 610 ± 5°C. The extent of the β′-Cu2V2O7-base solid solution is 9 to 65 mol % Zn2V2O7 at 615 ± 5°C, expanding to 0 mol % Zn2V2O7 with rising temperature. Original Russian Text ¢ T.I. Krasnenko, M.V. Rotermel’, S.A. Petrova, R.G. Zakharov, O.V. Sivtsova, A.N. Chvanova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 10, pp. 1755–1762.  相似文献   

15.
A physicochemical study of glasses based on the MO-Bi2O3-B2O3 and SrO-Bi2O3-B2O3 systems was performed. Glass formation regions were found. The structural and optical properties, as well as the thermal behavior of the glasses, were studied.  相似文献   

16.
Thermal and chemical durability studies of the phosphate glasses belonging to the binary MoO3-P2O5 and the ternary K2O-MoO3-P2O5 systems are reported. The chemical resistant attack tests carried out on the free alkaline MoO3-P2O5 glasses show that the glass associated with the P/Mo ratio 2 has the high chemical durability. It shows also a high glass transition temperature value. The above findings are interpreted in terms of the cross-link density of the glasses and the strength of the M-O bonds (M=P, Mo). The influence of K2O addition on the properties (density, T g, durability) of this binary high water resistant glass is studied. It is found that the chemical durability along with the other physical properties are reduced by the incroporation of K2O in the glass matrix. The results were explained by assuming the formation of non-bridging oxygens and weak bonds. The mechanism of the dissolution of these glasses is proposed.  相似文献   

17.
Differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) were used to study the thermal behaviour of (50-x)Na2O-xTiO2-50P2O5 and 45Na2O-yTiO2-(55-y)P2O5 glasses. The addition of TiO2 to the starting glasses (x=0 and y=5 mol% TiO2) resulted in a nonlinear increase of glass transition temperature and dilatation softening temperature, whereas the thermal expansion coefficient decreased. All prepared glasses crystallize under heating within the temperature range of 300–610°C. The contribution of the surface crystallization mechanism over the internal one increases with increasing TiO2 content. With increasing TiO2 content the temperature of maximum nucleation rate is also gradually shifted from a value close to the glass transition temperature towards the crystallization temperature. X-ray diffraction measurements showed that the major compounds formed by glass crystallization were NaPO3, TiP2O7 and NaTi2(PO4)3. The chemical durability of the glasses without titanium oxide is very poor, but with the replacement of Na2O or P2O5 by TiO2, it increases sharply.  相似文献   

18.
Microwave-induced combustion with glycine, CTAB-assisted hydrothermal process with NaOH and NH3, EDTA assisted-hydrothermal methods have been applied to prepare NiFe2O4 nanoparticles for the first time. Structural and magnetic properties of the products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmison electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and electron spin resonance spectrometry (EPR). TEM measurements showed that morphology of the product depends on the synthesis method employed. The average cystallite size of NiFe2O4 nanoparticles was in the range of 14–59 nm as measured by XRD. The uncoated sample (Method A) had an EPR linewidth of 1973 Oe, the coated samples reached lower values. The magnetic dipolar interactions existing among the Ni ferrite nanoparticles are reduced by the coatings, which could cause the decrease in the linewidth of the EPR signals. Additionally, the linewidth increases with an increase in the size and the size distribution of nanoparticles.  相似文献   

19.
The thermal stability, kinetics and glass forming ability of an Fe77C5B4Al2GaP9Si2 bulk amorphous alloy have been studied by differential scanning calorimetry. The activation energy, frequency factor and rate constant corresponding to the multiple crystallization steps were determined by the Kissinger method. X-ray diffraction and transmission electron microscopy studies revealed that the crystallization starts with the primary precipitation of α-Fe from the amorphous matrix. The kinetics of nucleation of the α-Fe nanoparticles was investigated by two different methods, i.e. isothermal annealing and continuous heating after partial annealing.  相似文献   

20.
Processes of the formation of germanatoborates Gd14B6Ge2O34 and Gd13.02Nd0.98B6Ge2O34 have been studied using different methods of synthesis (solid-state interaction, direct and inverse co-precipitation, self-propagating high-temperature synthesis (SHS)). It has been established that the synthesis of germanatoborates Gd14B6Ge2O34 and Gd13.02Nd0.98B6Ge2O34 using the inverse precipitation and SHS methods occurs with the formation of an intermediate apatite-like phase, which upon heating to above 1100°С is reconstructed into the Ln14B6Ge2O34 (Ln = Gd, Nd) structure. The germanatoborates synthesized crystallize in the trigonal system (space group P31). The lattice parameters of Gd13.02Nd0.98B6Ge2O34 are a = 9.746(4) Å and c = 25.795(13) Å. The thermal stability of the Gd14B6Ge2O34 and Gd13.02Nd0.98B6Ge2O34 germanatoborates has been studied. The obtained materials of composition Gd13.02Nd0.98B6Ge2O34 show luminescence properties and can be employed as infrared phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号