首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High surface hybrid silica materials containing di(2-pyridyl)methylamine-palladium dichloride complex covalently bonded to the silica matrix were prepared by sol-gel process and successfully tested as reusable catalysts for Suzuki cross-coupling reactions.  相似文献   

2.
A new polystyrene anchored Pd(II) azo complex has been synthesized and characterized. The present Pd(II) azo complex behaves as a very efficient heterogeneous catalyst in the Suzuki coupling and Sonogashira coupling reaction in water medium. Aryl halides, coupled with phenylboronic acids (Suzuki-Miyaura reaction) or terminal alkyne (Sonogashira reaction), smoothly afford the corresponding cross-coupling products in excellent yields (83-100% yield for Suzuki reaction and 68-96% yield for Sonogashira reaction of aryl halides) under phosphine-free reaction conditions in the presence of polystyrene anchored Pd(II) azo complex catalyst in water medium. Furthermore, the catalyst has shown good thermal stability and recyclability. This polymer-supported Pd(II) catalyst could be easily recovered by simple filtration of the reaction mixture and reused for more than six consecutive trials without a significant loss of its catalytic activity.  相似文献   

3.
Heterocyclic carbene‐Pd complex was anchored onto the mesoporous silica MCM‐41 which exhibits high catalytic activity in Heck reaction under phosphine free reaction conditions for the reaction of iodo/bromoarenes with olefinic compounds such as butyl acrylate, isopropyl acrylate and styrene. This catalytic system also showed high activity for Sonogashira coupling reaction of various aryl halides under copper, phosphine and solvent‐free reaction conditions. The air and thermally stable catalyst were reused several times without significant loss of its activity. High efficiency of the catalyst along with its recycling ability and the rather low Pd‐loading demonstrated in both Heck and Sonogashira coupling reactions are the merits of the presented catalyst system.  相似文献   

4.
Porous polymer supported palladium catalyst for cross coupling reactions with high activity has been successfully prepared by coordination of Pd 2+ species with Schiff bases functionalized porous polymer. The catalyst has been systemically investi-gated by a series of characterizations such as TEM, N 2 adsorption, NMR, IR, XPS, etc. TEM and N 2 isotherms show that the sample maintains the nanoporous structure after the modification and coordination. XPS results show that chemical state of palladium species in the catalyst is mainly +2. More importantly, the catalyst shows very high activities and excellent recycla-bility in a series of coupling reactions including Suzuki, Sonogashira, and Heck reactions. Hot filtration and poison of catalysts experiments have also been performed and the results indicate that soluble active species (mainly Pd(0) species) in-situ gener-ated from the catalyst under the reaction conditions are the active intermediates, which would redeposit to the supporter after the reactions.  相似文献   

5.
Short and efficient syntheses of various polymer-supported Pd catalysts are reported. The reactivity of these catalysts has been determined for the Suzuki reaction. It turned out that the (tert-butylphenylphosphinomethyl)polystyrene-supported Pd catalyst 2a is highly efficient for versatile Suzuki reactions from aryl chlorides. These couplings are performed in the presence of low amounts (4 mequiv) of supported Pd, the catalyst can be reused more than seven times without loss of efficiency and the Pd leaching is extremely low (<0.1% of the initial amount).  相似文献   

6.
Pre-catalyst nanoparticles (NPs) can be derived from FeCl3 and methyl Grignard that contain ppm levels of Pd and an associated ligand. By varying the amount of precious metal and the nature of the phosphine ligand, different C–C bond-forming reactions can be catalyzed in an aqueous medium containing very small amounts (2 wt %) of the designer surfactant TPGS-750-M. Reactions mediated by these NPs include Suzuki–Miyaura, Sonogashira, Mizoroki–Heck, and Negishi couplings, as well as other couplings that have appeared in the recent literature. Also included in the discussion are nitro group reductions that require even less Pd and no ligand for activity, as well as ppm Cu-containing NPs that catalyze click reactions in water at rt.  相似文献   

7.
A new polystyrene‐anchored Pd(II) pyridine complex is synthesized and characterized. This Pd(II) pyridine complex behaves as a very efficient heterogeneous catalyst in the Heck reaction of methyl acrylate with aryl halides and the Sonogashira reaction of terminal alkynes with aryl halides in water. Furthermore, the catalyst shows good thermal stability and recyclability. This polymer‐supported Pd(II) catalyst could easily be recovered by simple filtration of the reaction mixture and reused for more than five consecutive trials without a significant loss in its catalytic activity.  相似文献   

8.
A new porous organic polymer (POP) with high thermal stability and large surface area has been synthesized and applied in the preparation of Pd/POP catalyst. Pd/POP was characterized by XRD, TGA, SEM and TEM. The catalyst consists of highly dispersed palladium nanoparticles of 0.9–4 nm size on POP with a large surface area of 650 m2/g. It presents high catalytic activity for Suzuki‐Miyaura and Sonogashira reactions. The catalyst was reusable for three to five times without significant loss of activity.  相似文献   

9.
A novel poly(vinyl chloride)-supported Pd complex was found to be a highly active catalyst for the Heck and Sonogashira reactions of aryl halides under aerobic conditions. The complex is thermally stable, and can be easily recovered and reused. The catalyst was recycled for the Heck and Sonogashira reactions for five runs without appreciable loss of its catalytic activity, and with negligible metal leaching.  相似文献   

10.
Several water-soluble cyclopalladated complexes with five- or six-membered rings have been prepared as air-stable solids from Schiff base ligands bearing an N-phenyl sulfonate groups. Cyclopalladated complexes with six-membered rings show high catalytic efficiency for the Suzuki reactions of aryl bromides with phenylboronic acid in aqueous solvents under mild conditions. Palladium complex 1 can be used for five reaction cycles in high conversions for the Suzuki reactions in neat water without additives. The catalytic process for the Suzuki couplings is proved by TEM analysis to proceed on Pd(0) nanoparticles. Surfactant-protected palladium nanoparticles present lower activities and poorer recyclability for the coupling reactions than those generated in situ without additives.  相似文献   

11.
《Comptes Rendus Chimie》2017,20(2):132-139
Supported Pd–S-methylisothiourea on magnetic nanoparticles (Pd–SMU-MNPs) as an efficient and magnetically reusable nanocatalyst was prepared and applied for the Heck and Suzuki cross-coupling reactions. All coupling reactions proceeded in short reaction times with good to excellent yields. After completion of reactions, the catalyst was easily separated from the reaction mixture using an external magnetic field and reused for several consecutive runs without significant loss of its catalytic efficiency and activity. This nanomagnetic catalyst was characterized by FT-IR spectroscopy, XRD, VSM, ICP-OES, TEM and SEM techniques. The leaching of the catalyst has been examined by a hot filtration test and ICP-OES analysis.  相似文献   

12.
Scientific interest in carbon-based materials (CBMs) has grown dramatically over the past few decades. Due to a variety of atomic orbital hybrid forms (sp, sp2 and sp3 hybridization), carbon can form a variety of materials with diverse structures and characteristics. CBMs used as efficient catalyst supports show extensive promise in organic reactions, which is attributed to their structural similarity with organics, large specific surface area, chemical stability, and photocatalytic properties. This review presents the synthesis of CBM-supported palladium nanocatalysts based on impregnation, template methods, etc. The CBMs include activated carbon (AC), graphene, carbon nanotubes (CNTs), and their functionalized products, as supports for improving the activity and recyclability of simple Pd nanocatalysts. After surveying the literature where these catalysts have been utilized for carbon–carbon coupling reactions, there is a particular emphasis on Suzuki, Heck, and Sonogashira reactions. The catalytic mechanism of these Pd nanocatalysts (surface heterogeneous catalysis or homogeneous catalysis caused by Pd leaching) is discussed in detail, especially the effect of Pd leaching on the stability of the catalyst.  相似文献   

13.
The carbapalladacycle complex of 4-hydroxyacetophenone oxime is a highly active palladium catalyst to effect the Suzuki coupling of aryl chlorides and other C-C forming reactions in water. In an attempt to develop a reusable, homogeneous system based on this complex, its stability against prolonged heating in different ionic liquids and polyethylenglycol (PEG) has been studied. It was found that the palladium complex decomposes in water, 1-butyl-1-methylimidazolium hexafluorophosphate and 1-butyl-1-methylimidazolium chloride to form palladium nanoparticles in the first two cases and PdCl42− in the third case. In contrast, this cyclic palladium complex was stable upon extended heating in 1-butyl-2,3-dimethylimidazolium hexafluorophosphate and in PEG. The activity of this complex for the Suzuki and Sonogashira correlates with the stability of the complex, the activity in PEG being higher than any of the ionic liquids tested. Although the carbapalladacycle complex also decomposes in PEG upon reaction, the resulting Pd nanoparticles (2-5 nm size) are stabilized by PEG acting as ligand. In this way, a reusable, homogeneous system in PEG has been developed that is able to effect the Suzuki and Sonogashira couplings without the need of copper and phosphorous ligands, working at the open air.  相似文献   

14.
A magnetically recoverable biopolymer-based nanocatalyst was prepared through the covalent immobilization of a chitosan-bound 2-hydroxynaphthaldehyde Pd complex on the surface of superparamagnetic nanoparticles. The nanocatalyst was characterized by FTIR, X-ray powder diffraction and scanning electron microscopy, revealing an average particle size of 70 nm. The catalyst shows high thermostability by thermogravimetric analysis. Estimated Pd loading by inductively coupled plasma atomic emission analysis was found to be 0.348 mmol g?1. The nanocatalyst exhibits excellent catalytic performance in Suzuki couplings of various aryl halides with phenylboronic acid, and Heck reactions of iodo- and bromoarenes with butylacrylate. The catalyst can be easily separated from the reaction mixture with an external magnet and reused consecutively four times without significant loss in activity.  相似文献   

15.
孙斌  王江淋 《分子催化》2019,33(1):58-65
将一种水溶性Salen,N,N’-双[(5-磺酸基-2-羟基)苄基]缩N,N’-二甲基-1,2-乙二胺(L)与醋酸钯原位生成水溶性Salen-Pd配合物,该水溶性钯配合物应用于催化微波加热的水中的Heck和Sonogashira碳-碳偶联反应.在优化反应条件之后,对溴苯衍生物与乙烯衍生物的Heck偶联反应以及溴苯衍生物与苯乙炔及其衍生物之间的Sonogashira偶联反应进行了考察.发现,在优化的反应条件下,无论是Heck反应,还是Sonogashira偶联反应,都能得到很好的收率.在有机物分离之后,水相继续循环使用4次,在水相的前3次循环使用时,都获得了不错的收率.  相似文献   

16.
Mizoroki–Heck couplings of aryl iodides and bromides with butyl acrylate were investigated as model systems to perform transition‐metal‐catalyzed transformations in continuous‐flow mode. As a suitable ligandless catalyst system for the Mizoroki–Heck couplings both heterogeneous and homogeneous Pd catalysts (Pd/C and Pd acetate) were considered. In batch mode, full conversion with excellent selectivity for coupling was achieved applying high‐temperature microwave conditions with Pd levels as low as 10?3 mol %. In continuous‐flow mode with Pd/C as a catalyst, significant Pd leaching from the heterogeneous catalyst was observed as these Mizoroki–Heck couplings proceed by a homogeneous mechanism involving soluble Pd colloids/nanoparticles. By applying low levels of Pd acetate as homogeneous Pd precatalyst, successful continuous‐flow Mizoroki–Heck transformations were performed in a high‐temperature/pressure flow reactor. For both aryl iodides and bromides, high isolated product yields of the cinnamic esters were obtained. Mechanistic issues involving the Pd‐catalyzed Mizoroki–Heck reactions are discussed.  相似文献   

17.
In this paper, the solid-phase synthesis of various substituted pyrimidine nucleosides is described starting from 2'-deoxyuridine, which has been attached through a base labile linker to polystyrene resins. The utility of the Pd(0) cross-coupling to functionalized pyrimidine nucleosides is expanded herein to include reactions of resin-supported 5-iodo-2'-deoxyuridine under Sonogashira, Stille, Heck, and Suzuki conditions. Upon cleavage with MeONa, a library of 5-substituted pyrimidine nucleosides was obtained in good (under Sonogashira and Stille conditions) to moderate (under Heck or Suzuki conditions) yields and high purity. Except the Suzuki-type reactions, the presented methods exhibit a significant improvement and facilitate the synthetic procedure with respect to purification and yields (determined after filtration over silica gel).  相似文献   

18.
A new type of soluble polystyrene-supported palladium complex as an excellent and recyclable palladacycle catalyst was discovered for carboncarbon bond formation in Heck, Suzuki and Sonogashira reactions. Precipitation and filtration process for recycling the catalyst was also achieved.  相似文献   

19.
We report copper-catalyzed intramolecular cyclization of 8-alkynyl-1,2,3,4-tetrahydroquinolines, obtained via a Pd/C-mediated Sonogashira coupling in water, to afford 2-substituted 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolines. Further functionalization of the compounds synthesized was carried out under Heck, Sonogashira, and Suzuki reaction conditions.  相似文献   

20.
Nitin S. Nandurkar 《Tetrahedron》2008,64(17):3655-3660
Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate): a structurally well-defined O-containing transition metal complex is reported as an efficient catalyst for Suzuki, Heck, and Sonogashira cross-coupling reactions. The protocol was also applied successfully for cyanation of aryl halides under milder operating conditions. The system tolerated the coupling of various aryl halides with alkenes, alkynes, and organoboronic acid along with the cyanation of aryl halides providing good to excellent yields of desired products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号