首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiation of cis-1,2-dimethyl-1,2-diphenyl-1,2-disilacyclohexane (1a) in the presence of tert-butyl alcohol in hexane with a low-pressure mercury lamp bearing a Vycor filter proceeded with high stereospecificity to give cis-2,3-benzo-1-tert-butoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (2a), in 33% isolated yield, together with a 15% yield of 1-[(tert-butoxy)methylphenylsilyl]-4-(methylphenylsilyl)butane (3). The photolysis of trans-1,2-dimethyl-1,2-diphenyl-1,2-disilacyclohexane (1b) with tert-butyl alcohol under the same conditions gave stereospecifically trans-2,3-benzo-1-tert-butoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (2b) in 41% isolated yield, along with a 12% yield of 3. Similar photolysis of 1a and 1b with tert-butyl alcohol-d1 produced 2a and 2b, respectively, in addition to 1-[(tert-butoxy)(monodeuteriomethyl)(phenyl)silyl]-4-(methylphenylsilyl)butane. When 1a and 1b were photolyzed with acetone in a hexane solution, cis- and trans-2,3-benzo-1-isopropoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (4a and 4b) were obtained in 25% and 23% isolated yield. In both photolyses, 1-(hydroxymethylphenylsilyl)-4-(methylphenylsilyl)butane (5) was also isolated in 4% and 5% yield, respectively. The photolysis of 1a with acetone-d6 under the same conditions gave 4a-d6 and 5-d1 in 18% and 4% yields.  相似文献   

2.
Reaction of quinolin-8-amine with 1H-pyrrole-2-carbaldehyde or 5-tert-butyl-1H-pyrrole-2-carbaldehyde catalyzed by HCO2H forms N-((1H-pyrrol-2-yl)methylene)quinolin-8-amine (≡ HL, 3a) or N-((5-tert-butyl-1H-pyrrol-2-yl)methylene)quinolin-8-amine (≡ HL′, 3b). Treatment of 3a and 3b respectively with AlMe3 or AlEt3 in toluene affords corresponding aluminum complexes LAlMe2 (4a), L′AlMe2 (4b) and LAlEt2 (4c). Reaction of 3a and 3b with an equivalent of ZnEt2 in toluene generates L2Zn and L′2Zn, respectively. A related compound N-((1H-pyrrol-2-yl)methylene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)benzenamine (≡ HL″, 7) was prepared by reaction of 2-(3,5-dimethyl-1H-pyrazol-1-yl)benzenamine with 1H-pyrrole-2-carbaldehyde in the presence of HCO2H. Reaction of 7 with AlMe3 gives L″2AlMe (8), and with ZnEt2 yields L″2Zn (9). All new compounds were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 4b, 5b and 8 were additionally characterized by single crystal X-ray diffraction analyses. Complexes 4a-4c, and 8 were proved to be active catalysts for the ring-opening polymerization (ROP) of ?-caprolactone (?-CL) in the presence of BnOH. The kinetic study of the polymerization reactions catalyzed by 4a and 8 was performed.  相似文献   

3.
The one pot synthesis of fused 2,3-dihydropyrrolizine 4a and 6,7-dihydro-5H-indolizine 4b involving the intermolecular dehydrative condensation of 1-phenyl-1,6-dioxo-hepta-2,4-diene 1 with 2-chloroethylamine and 3-chloropropylamine followed by the intramolecular cyclization of the intermediary products 2-(1-chloroalkyl-5-methylpyrrol-2-yl)-1-phenylethanones 3a,b in the presence of a base such as Na2CO3 and NaHCO3 is described. These also led to the concurrent formation of the oxidatively dimerized product 2,3-bis-[1,5-(2-chloroalkyl)-1-H-pyrrol-2-yl]-1,4-diphenylbutane-1,4-dione 5a,b whereby the structure was further confirmed by X-ray analysis.  相似文献   

4.
(5Z,5′Z)-3,3′-(1,4-Phenylenebis(methylene)-bis-(5-arylidene-2-thioxothiazolidin-4-one) derivatives (5a-r) have been synthesized by the condensation reaction of 3,3′-(1,4- or 1,3-phenylenebis(methylene))bis(2-thioxothiazolidin-4-ones) (3a,b) with suitably substituted aldehydes (4a-f) or 2-(1H-indol-3-yl)2-oxoacetaldehydes (8a-c) under microwave conditions. The bis(2-thioxothiazolidin-4-ones) were prepared from the corresponding primary alkyl amines (1a,b) and di-(carboxymethyl)-trithiocarbonyl (2). The 2-(1H-indol-3-yl)-2-oxoacetaldehydes (8a-c) were synthesized from the corresponding acid chlorides (7a-c) using HSnBu3.  相似文献   

5.
Sulfur analogues of the soluble guanylate cyclase (sGC) inhibitor NS2028 1a are synthesized. Treating 8-bromo-2H-benzo[b][1,4]oxazin-3(4H)-one oxime (6) with 1,1′-thiocarbonyldiimidazole (1.1 equiv) gave the carbamothioate 8-bromo-4H-[1,2,4]oxadiazolo[3,4-c][1,4]benzoxazine-1-thione (3a) in 83% yield. Alternatively reacting NS2028 1a with P2S5 (0.5 equiv) affords the carbamothioate 3a in 80% yield. Similar treatment of 8-aryl substituted NS2028 analogues 1b-d with P2S5 gave the carbamothioates 3b-d in 64-91% yields. Although quite stable, the carbamothioates 3a-d could be thermally isomerized in the presence of Cu (10 mol %) to afford the thiocarbamates 4a-d in high yields. Interestingly, in the case of carbamothioate 3a Pd and In metals also facilitated the isomerization. Furthermore, treatment of the thiocarbamates 4a-d with P2S5 (0.5 equiv) affords the carbamodithioates 5a-d in 72-89% yields. All new compounds are fully characterized including single crystal X-ray data for carbamothioate 3a and thiocarbamate 4a. Finally, a mechanism is proposed for the carbamothioate to thiocarbamate isomerization.  相似文献   

6.
Synthetic, structural and catalysis studies of Ni(II) and Cu(II) complexes of a series of phenoxy-ketimine ligands with controlled variations of sterics, namely 2-[1-(2,6-diethylphenylimino)ethyl]phenol (1a), 2-[1-(2,6-dimethylphenylimino)ethyl]phenol (1b) and 2-[1-(2-methylphenylimino)ethyl]phenol (1c), are reported. Specifically, the ligands 1a, 1b and 1c were synthesized by the TiCl4 mediated condensation reactions of the respective anilines with o-hydroxyacetophenone in 21–23% yield. The nickel complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Ni(II) (2a) and {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Ni(II) (2b), were synthesized by the reaction of the respective ligands 1a and 1b with Ni(OAc)2 · 4H2O in the presence of NEt3 as a base in 71–75% yield. The copper complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Cu(II) (3a), {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Cu(II) (3b) and {2-[1-(2-methylphenylimino)ethyl]phenoxy}2Cu(II) (3c) were synthesized analogously by the reactions of the ligands 1a, 1b and 1c with Cu(OAc)2 · H2O in 70–87% yield. The molecular structures of the nickel and copper complexes 2a, 2b, 3a, 3b and 3c have been determined by X-ray diffraction studies. Structural comparisons revealed that the nickel centers in 2a and 2b are in square planar geometries while the geometry around the copper varied from being square planar in 3a and 3c to distorted square planar in 3b. The catalysis studies revealed that while the copper complexes 3a, 3b and 3c efficiently catalyze ring-opening polymerization (ROP) of l-lactide at elevated temperatures under solvent-free melt conditions, producing polylactide polymers of moderate molecular weights with narrow molecular weight distributions, the nickel counterparts 2a and 2b failed to yield the polylactide polymer.  相似文献   

7.
Ring-opening halosilation of cyclic ethers with reagents of (Me2N)2SiMe2/4MeI (1a) and (Me2N)2SiMe2/4allylBr (1b) was studied. Tetrahydrofuran and cyclohexene oxide reacted with 1a and 1b to give ring-opened di(haloalkoxy)dimethylsilanes in good yield. With less strained tetrahydropyran, however, only reagent 1a gave the ring-opened product. Reactions of reagents 1a and 1b with propylene oxide also proceeded smoothly, although the regioselectivity was rather low. When similar reactions were carried out with (Me2N)2SiMe2/2MeI (2a) and (Me2N)2SiMe2/2allylBr (2b) in a ratio of cyclic ethers/2a or 2b = 1/1, the corresponding 1:1 adducts were obtained.  相似文献   

8.
A series of pyrrolyl-imines HL1-6 was prepared by the condensation of pyrrole-2-carboxyaldehyde with different amines. The reaction of 2 equiv of pyrrolyl-imine with tetrabenzyl complexes of hafnium and zirconium M(CH2Ph)4 (M=Hf or Zr) gave dibenzyl complexes (L3-6)2M(CH2Ph)2, which were characterized by NMR spectroscopy and crystal structure analysis. NMR spectra of the complexes with secondary alkyl substituents at the imine nitrogen (isopropyl: 3a, 4-tert-butylcyclohexyl: 4a and 4b) suggest that rapid racemization between Δ and Λ configurations occurs in solution on the NMR time scale. The complexes with pyrrolide-imine ligands with a tertiary alkyl group such as tert-butyl (5a and 5b) or 1-adamantyl (6a and 6b) at the imine nitrogen possess cis-configured benzyl groups. Hafnium complexes 5a and 6a react with B(C6F5)3 in bromobenzene-d5 to give the corresponding cationic benzyl complexes, which exhibit high activity for ethylene polymerization (5a: 2242 kg-polymer/ mol-Hf h bar, 6a: 2096 kg-polymer/ mol-Hf h bar). Zirconium complexes 5b and 6b display a remarkably high ethylene polymerization activity when activated with methylaluminoxane (5b: 17,952 kg-polymer/mol-Zr h bar, 6b: 22,944 kg-polymer/mol-Zr h bar).  相似文献   

9.
The BF3-catalyzed cyclization of 3-acetyl-1-aryl-2-pentene-1,4-diones 1a-e in the presence of water in boiling tetrahydrofuran gave bis(3-acetyl-5-aryl-2-furyl)methanes 2a-e in 26-79% yields along with a small amount of 3-acetyl-5-aryl-2-methylfurans 3a-e. The exact structure of 2a was determined by X-ray crystallography. The use of a half volume of the solvent for the reaction of 1a resulted in the formation of 2,4-bis(3-acetyl-5-phenyl-2-furfuryl)-3-acetyl-5-phenylfuran (4) together with 2a and 3a. A similar reaction of 1a was carried out in the presence of 3-acetyl-5-(4-methylphenyl)-2-methylfuran (3d) to afford 4-(3-acetyl-5-phenyl-2-furfuryl)-3-acetyl-5-(4-methylphenyl)-2-methylfuran (5) in 49% yield. The BF3-catalyzed reaction of 1a with 2,4-pentanedione in dry tetrahydrofuran at 23°C gave 3-(3-acetyl-5-phenyl-2-furfuryl)-4-hydroxy-3-penten-2-one (6a) and 3-(3-acetyl-2-methyl-4-phenyl-5-furyl)-4-hydroxy-3-penten-2-one (7a) in 66 and 24% yields, respectively. The product distribution depended on the reaction temperature. A similar reaction of 1b-e also yielded the corresponding trisubstituted furans 6b-e and tetrasubstituted furans 7b-e in good yields. These results suggested the presence of the furfuryl carbocation intermediate A during the reaction. The one-pot synthesis of 6a and 7a was also achieved by a similar reaction using phenylglyoxal. The deoxygenation of 1a with triphenylphosphine gave 3a in 88% yield, while 1a was treated with concentrated hydrochloric acid to yield 3-acetyl-2-chloromethyl-5-phenylfuran (8) which was quantitatively transformed in ethanol into 3-acetyl-2-ethoxymethyl-5-phenylfuran (9) and in water into 3-acetyl-5-phenylfurfuryl alcohol (10), respectively. In addition, the Diels-Alder reaction of cyclopantadiene with 1a gave the corresponding [4+2] cycloaddition products 11 and 12.  相似文献   

10.
The reactions of hexachlorocyclotriphosphazene, N3P3Cl6, with mono (1 and 2) and bis(4-fluorobenzyl) diamines (3-5), FPhCH2NH(CH2)nNHR (RH or FPhCH2-), produce mono (1a and 2a) and bis(4-fluorobenzyl) monospirocyclophosphazenes (3a-5a). The tetraaminomonospirocyclophosphazenes (1b-2d) are obtained from the reactions of the partly substituted phosphazenes (1a and 2a) with excess pyrrolidine, morpholine and 1,4-dioxa-8-azaspiro[4,5]decane (DASD), respectively. The tetrachlorobis(4-fluorobenzyl) monospirocyclophosphazenes (4a and 5a) with excess pyrrolidine, morpholine and DASD afford the fully substituted bis(4-fluorobenzyl) monospirocyclophosphazenes (4b, 4d-5d) in boiling THF. In addition, monochlorobis(4-fluorobenzyl) monospirocyclophosphazenes (4e and 4f) have also been isolated from the reactions with excess morpholine and DASD in boiling THF. The structural investigations of the compounds have been verified by elemental analyses, MS, FTIR, 1H, 13C, 19F (for 1d and 2d), 31P NMR, HSQC and HMBC techniques. The crystal structures of 3a, 4a, 5a and 2b have been determined by X-ray crystallography. The compounds 2a-5a, 1b-2d, 4b, 4d-5d, 4e and 4f have been screened for antibacterial effects on bacteria and for antifungal activity against yeast strains. The compounds 1b and 4b showed antimicrobial activity against three species of bacteria, Bacillus subtilis, Bacillus cereus and Staphylococcus aureus, and two fungi, Candida albicans and Candida tropicalis. Minimum inhibitory concentrations (MIC) were determined for 1b and 4b. The MIC values were found to be 5000 μM for each bacteria. The most effective compound, 4b has exhibited activity with a MIC of 312 μM for C. albicans and 625 μM for C. tropicalis. DNA-binding and the nature of the interaction with pBR322 plasmid DNA are studied. All of the compounds induce changes on the DNA mobility and intensity. Prevention of HindIII digestion with the compounds indicates that the compounds bind with AT nucleotides in DNA.  相似文献   

11.
Palladium catalyzed cross-coupling of 3-amino- and 3-acylamido-2-bromopyridines 1a-f with triethyl phosphite allowed the synthesis of 3-amino- and 3-acylamido pyridine-2-phosphonic acid diethyl esters 2a-f, whereas nickel catalysts, although providing access to related anilido-2-phosphonates, proved inactive. Reduction of the aminophosphonate 2a with LiAlH4 afforded 3-amino-2-phosphinopyridine (3a), which was cyclocondensed with dimethylformamide dimethyl acetal (DMFA) via phosphaalkene intermediates 4a to the novel pyrido[b]-anellated 1,3-azaphosphole 5a. Reaction of amidophosphonates 2b-f with LiAlH4 did not result in the expected reductive cyclization, as shown by closely related anilido-2-phosphonates, but led to product mixtures containing N-secondary 3-amino-2-phosphinopyridines 3b-f as the main or major component. The conversion of 3b,d,e with DMFA to 5b,d,e provides first examples of N-substituted pyrido[b]-anellated azaphospholes. Structures were confirmed by multinuclear NMR and X-ray crystallography (for 2c, 3b).  相似文献   

12.
4,6-Diaryl-2-(pyrrolidin-1-yl)-nicotinonitriles 2a-k and 3-amino-2,4-dicyano-5-aryl-biphenyls 3a-c were synthesized from 1,3-diaryl-prop-2-en-1-ones 1a-k and malononitrile by a convenient one-pot method. Likewise, the reaction of aromatic aldehydes with malononitrile afforded 6-amino-4-aryl-2-(pyrrolidin-1-yl)-pyridine-3,5-dicarbonitriles 6a-f. The reaction of mesityl oxide with malononitrile gave 5-amino-7-(pyrrolidin-1-yl)-2,4,4-trimethyl-1,4-dihydro-1,6-naphthyridine-8-carbonitrile 8. The NLO studies of the pyridinedinitrile derivatives 6a, b, f showed a high value while that of nicotinonitrile 2b was weak.  相似文献   

13.
Ashraf A Abbas 《Tetrahedron》2004,60(7):1541-1548
The 13-hydroxy macrocycles 7a-d were prepared in 40-50% yields by the condensation of 1,ω-bis(4-amino-1,2,4-triazol-3-ylsulfany)alkanes 2a-d with 1,3-bis(2-formyphenoxy)-2-propanol (9). Acylation of 7a-d with 2-chloroacetylchloride gave the corresponding esters 11a,b. Amination of 11a,b with different amines in acetone furnished exclusively the target lariat macrocycles 12a,b and 13 in 60-70% yields. Reaction of 2 equiv. of the macrocycles 11a,b with 1 equiv. of piperazine afforded the novel bis macrocyles 14a,b in 50-60% yields. Reduction of 7a-d with NaBH4 afforded the corresponding 13-hydroxyazathia crown ethers 15a-d in 65-70% yields.  相似文献   

14.
Novel bridged bis-azulenyl hafnocenes: dichlorodimethylsilylenebis(2-methyl-4-phenyl-4H-azulenyl) hafnium (4a) and dichlorodimethylsilylenebis[2-ethyl-4-(4-chlorophenyl)-4H-azulenyl] hafnium (4b) were synthesized from 2-methylazulene and 2-ethylazulene, respectively. Hydrogenation of 4a and 4b gave novel bis-tetrahydroazulenyl hafnocenes: dichlorodimethylsilylenebis(2-methyl-4-phenyl-4H-5,6,7,8-tetrahydroazulenyl) hafnium (5a) and dichlorodimethylsilylenebis[2-ethyl-4-(4-chlorophenyl)-4H-5,6,7,8-tetrahydroazulenyl] hafnium (5b). The structures of 4a and 5b were determined by X-ray crystallographic analysis to fold C2 symmetry. These hafnocenes were found to be active catalysts for propylene polymerization in the presence of methylaluminoxane (MAO), and the preliminary polymerization behavior of these catalysts was evaluated. The melting point and molecular weight of resultant polypropylene were higher than those of the bis-azulenyl zirconocenes. In particular, a high melting point (160 °C for 5a and 161 °C for 5b) was observed with the bis-tetrahydroazulenyl system, although the activities by these hafnocenes were lower than those by the corresponding zirconocenes.  相似文献   

15.
Dimethyldioxirane (1a) and its trifluoro analog (1b) were employed to achieve selectively the direct transformation of hex-3-yne-2,5-diol 3a and 1,4-diphenyl-but-2yne-1,4-diol 3b (two representative acetylenic 1,4-diols) into the corresponding carbonyls, leaving the carbon-carbon triple bond moiety untouched. The results are compared with those recorded in the analogous oxidation using the methyltrioxorhenium (MTO)/85% H2O2 homogeneous system. The powerful methyl(trifluoromethyl)dioxirane (1b) is the reagent of choice to achieve optimum yields of the target alkyne-1,4-diones, which are extremely versatile synthons.  相似文献   

16.
1-Boraadamantane (1) and 2-ethyl-1-boraadamantane (1(2-Et)) react with bis(trialkylstannyl)ethynes (3), R3Sn-CC-SnR3 with R=Me (a), Et (b), in a 1:1 molar ratio by 1,1-organoboration under very mild conditions to give the 4-methylene-3-borahomoadamantane derivatives 4a,b and 7a,b, respectively, which are dynamic at room temperature with respect to deorganoboration. The compounds 4a,b react further with 3a,b by 1,1-organoboration to the tricyclic butadiene derivatives 5a,b. Attempts to crystallise 4a afforded the product of hydrolysis, the diboroxane 6a which was characterised by X-ray structural analysis. All products were characterised in solution by 1H-, 11B-, 13C- and 119Sn-NMR spectroscopy.  相似文献   

17.
The Baylis-Hillman reaction of 3-O-benzyl-α-d-xylo-pentodialdo-1,4-furanose 2 afforded a diastereomeric mixture of l-ido- and d-gluco-configurated α-methylene-β-hydroxy esters 3a and 3b, respectively, in 1:1 ratio. Conjugate addition of benzyl amine on 3a gave adduct 4a as a major product while, addition of benzyl amine to 3b gave only one diastereomer 4b. Reduction of ester functionality in 4a/4b, opening of 1,2-acetonide functionality followed by reductive amino-cyclization under hydrogenation condition afforded azocanes 1c/1d in good yield.  相似文献   

18.
The new N-4-trifluoromethylphenyl-norbornene-5,6-dicarboximide (2a) and N-3,5-bis(trifluoromethyl)phenyl-norbornene-5,6-dicarboximide (2b) mixtures of exo and endo monomers were synthesized and polymerized via ring opening metathesis polymerization (ROMP) using bis(tricyclohexylphosphine) benzylidene ruthenium(IV) dichloride (I) and tricyclohexylphosphine [1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene][benzylidene] ruthenium dichloride (II) to produce the corresponding polynorbornene dicarboximides Poly-2a and Poly-2b, respectively. The transport of five gases He, N2, O2, CO2 and CH4 across membranes prepared from Poly-2a was determined at 35 °C using a constant volume permeation cell. The gas transport properties of the fluorine containing polymer Poly-2a were compared with those found for membranes from non-fluorinated poly(N-phenyl-exo-endo-norbornene-5,6-dicarboximide) (P-PhNDI). Gas permeability, diffusion and solubility coefficients of the fluorine containing polynorbornene Poly-2a were up to an order of magnitude larger than those of the non-fluorinated one. Poly-2a was found to have one of the largest gas transport coefficients reported to date in glassy polynorbornene dicarboximides.  相似文献   

19.
3-(6-Phenylimidazo[2,1-b]thiazol-5-yl)quinoxalin-2(1H)-ones (qunoxalinone) (6a-q) have been synthesized by the reaction of ethyl 2-oxo-2-(6-phenylimidazo[2,1-b]thiazol-5-yl)acetates (4a-e) with suitably substituted o-phenylenediamines (5a-f) under microwave heating. The ethyl 2-oxo-2-(6-phenylimidazo[2,1-b]thiazol-5-yl)acetates (4a-e) were prepared by the reaction of 6-phenylimidazo[2,1-b]thiazoles (3a-e) with ethyl chlorooxoacetate in refluxing 1,4-dioxane whereas the thiazoles (3a-e) were synthesized by the reaction of 2-bromo-1-phenylethanones (2a-e) with thiazol-2-amine in refluxing acetone.  相似文献   

20.
1,1,3,3,3-Pentafluoro-2-pentafluorophenyl-1,2-epoxypropane 1 reacted with trimethylphosphite giving two diastereomers, (Z)- and (E)-3,6-bis(trifluoromethyl)-3,6-bis(pentafluorophenyl)-1,4-dioxan-2,5-dione 2a, b in a 1:1 ratio, cyclodimerisation product of the intermediately generated α-lactone 4. Compounds 2a, b were hydrolysed to furnish 3,3,3-trifluoro-2-hydroxy-2-(2,3,4,5,6-pentafluorophenyl)propionic acid 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号