首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated a novel unique pentaketide dimer designated as epoxytwinol A from the fermentation broth of a fungus. The structure of epoxytwinol A was determined to have a new carbon skeleton with C(2) symmetry by elucidation of spectroscopic evidence. Epoxytwinol A inhibited endothelial cell migration stimulated by vascular endothelial growth factor (ED(100)= 2.6 microM).  相似文献   

2.
A unique pentaketide dimer structure of a novel fungal metabolite with antiangiogenic activity, designated as epoxyquinol A (1), was determined on the basis of NMR spectral data as well as the X-ray crystallographic analysis. 1 inhibits the endothelial migration induced by vascular endothelial growth factor (ED100 = 3 mug/mL).  相似文献   

3.
Biosynthetic studies on spiro-mamakone A (1), a potently cytotoxic and antimicrobial compound from an endophytic fungus isolated from the New Zealand native tree Knightia excelsa (rewarewa), confirm the polyketide origins of this unique compound belonging to the spirobisnaphthalene class of compounds. The biosynthesis proceeds via an unprecedented symmetric enedione with the two halves of the molecule being formed from two separate pentaketide units connected by oxidative coupling.  相似文献   

4.
A stereoselective synthesis of the pentaketide lactone (3R,4S,5S,9S)-3,5,9-trihydroxy-4-methylundecanoic acid δ-lactone has been achieved.  相似文献   

5.
Mellein and the related 3,4-dihydroisocoumarins are a family of natural products with interesting biological properties. The mechanisms of dihydroisocoumarin biosynthesis remain largely speculative today. Here we report the synthesis of mellein by a partially reducing iterative polyketide synthase (PR-PKS) as a pentaketide product. Remarkably, despite the head-to-tail homology shared with several fungal and bacterial PR-PKSs, the mellein synthase exhibits a distinct keto reduction pattern in the synthesis of the pentaketide. We present evidence to show that the ketoreductase (KR) domain alone is able to recognize and differentiate the polyketide intermediates, which provides a mechanistic explanation for the programmed keto reduction in these PR-PKSs.  相似文献   

6.
Abstract

A convenient method to concentrate and separate intermediates and related secondary products of the pentaketide pathway leading to melanin biosynthes is has been developed. Twelve of the fourteen known compounds were separated using reverse phase high performance liquid chromatography with a 12 to 42% linear gradient of acetonitrile in 2% acetic acid. The remaining two, highly water soluble isomers, were isocraticly separated on the same column with 5% acetonitrile in 2% acetic acid. Solid phase extraction and concentration of representitive compounds in acidified aqueous brine was accomplished with reverse phase Sep-Pak cartridges. The effectiveness of the method was evaluated by determining the pentaketides produced by cell-free homogenates of Verticillium dahliae supplied with scytalone as the substrate and by cultures of two V. dahliae mutants. The method has the potential for quantifying all known pentaketide melanin metabolites and thus will allow for more comprehensive studies of fungal melanin biosynthesis.  相似文献   

7.
Elaiophylin is an unusual C2‐symmetric antibiotic macrodiolide produced on a bacterial modular polyketide synthase assembly line. To probe the mechanism and selectivity of diolide formation, we sought to reconstitute ring formation in vitro by using a non‐natural substrate. Incubation of recombinant elaiophylin thioesterase/cyclase with a synthetic pentaketide analogue of the presumed monomeric polyketide precursor of elaiophylin, specifically its N‐acetylcysteamine thioester, produced a novel 16‐membered C2‐symmetric macrodiolide. A linear dimeric thioester is an intermediate in ring formation, which indicates iterative use of the thioesterase active site in ligation and subsequent cyclization. Furthermore, the elaiophylin thioesterase acts on a mixture of pentaketide and tetraketide thioesters to give both the symmetric decaketide diolide and the novel asymmetric hybrid nonaketide diolide. Such thioesterases have potential as tools for the in vitro construction of novel diolides.  相似文献   

8.
通过一个共同的中间体6,首次全合成了fuscinarin (1)和全合成了fuscins,它们都是戊烯酮(pentaketide)的代谢物,在亲近闪烁检测(scintillation proximity assay)中显示具有抗CCR5的活性。这一合成主要是利用微波辅助的 ortho-Claisen/Cope 重排的串联反应更合成中间体10。  相似文献   

9.
Russian Journal of Organic Chemistry - The first stereoselective total synthesis of the linear pentaketide Modiolin has been performed via Jacobsen’ hydrolytic kinetic resolution and...  相似文献   

10.
A truncated version of the spinosyn polyketide synthase comprising the loading module and the first four extension modules fused to the erythromycin thioesterase domain was expressed in Saccharopolyspora erythraea. A novel pentaketide lactone product was isolated, identifying cryptic steps of spinosyn biosynthesis and indicating the potential of this approach for the biosynthetic engineering of spinosyn analogues. A pathway for the formation of the tetracyclic spinosyn aglycone is proposed.  相似文献   

11.
Biosynthesis of the polyketide, dehydrocurvularin 1, by Alternaria cinerariae was examined by incorporation experiments with N-acetylcysteamine (NAC) thiolesters of potential labeled di-, tri-, tetra-, and pentaketide assembly intermediates, 5–10. The results show that diketide and ,β-unsaturated tetraketide precursors can be utilized intact, whereas a saturated tetraketide can not, thereby suggesting that 1 is the initial PKS product. Curvularin 2 and 1 could not be interconverted by A. cinerariae, but 8-hydroxycurvularin 3 and 1 are transformed into each other by component(s) in the fermentation media.  相似文献   

12.
The fully stereocontrolled total synthesis of (?)‐penibruguieramine A, a naturally occurring marine pyrrolizidine alkaloid, is described in this study for the first time. The key synthetic sequence is the biomimetic aldol reaction of the proline pentaketide amide. The principles of “memory of chirality” (MOC) and “dynamic kinetic resolution” (DKR) are applied to this reaction for the asymmetric synthesis using proline as the only chiral source. A mechanistic rationale is discussed for the excellent stereochemical outcome in a protic solvent environment.  相似文献   

13.
A growing number of functionally divergent the chalcone synthase (CHS) superfamily type III polyketide synthases (PKSs) have been cloned and characterized, which include recently obtained pentaketide chromone synthase (PCS) and octaketide synthase (OKS) from aloe (Aloe arborescens). Recombinant PCS expressed in Escherichia coli catalyzes iterative condensations of five molecules of malonyl-CoA to produce a pentaketide, 5,7-dihydroxy-2-methylchromone, while OKS carries out sequential condensations of eight molecules of malonyl-CoA to yield aromatic octaketides, SEK4 and SEK4b, the longest polyketides generated by the structurally simple type III PKS. The two enzymes share 91% amino acid sequence identity, maintaining most of the active-site residues of CHS including the Cys-His-Asn catalytic triad. One of the most characteristic features is that the conserved Thr197 of CHS (numbering in Medicago sativa CHS) is uniquely replaced with Met207 in PCS and with Gly207 in OKS, respectively. Site-directed mutagenesis and X-ray crystallographic studies clearly demonstrated that the chemically inert single residue lining the active-site cavity controls the polyketide chain length and the product specificity depending on the steric bulk of the side chain. Finally, on the basis of the crystal structures of both wild-type and M207G-mutant PCS, a triple mutant PCS F80A/Y82A/M207G was constructed and shown to catalyze condensations of nine molecules of malonyl-CoA to produce a novel nonaketide naphthopyrone with a fused tricyclic ring system. Structure-based engineering of the type III PKS superfamily enzymes would thus lead to further production of chemically and structurally divergent unnatural novel polyketides.  相似文献   

14.
A synthetic metabolic pathway has been constructed in vitro consisting of the type III polyketide synthase from Streptomyces coelicolor and peroxidases from soybean and Caldariomyces fumago (chloroperoxidase). This has resulted in the synthesis of the pentaketide flaviolin and its dimeric derivative, and a wide range of pyrones and their coupled derivatives with flaviolin, as well as their halogenated derivatives. The addition of acyl-CoA oxidase to the pathway prior to the polyketide synthase resulted in unsaturated pyrone side chains, further broadening the product spectrum that can be achieved. The approach developed in this work, therefore, provides a new model to exploit biocatalysis in the synthesis of complex natural product derivatives.  相似文献   

15.
A novel plant-specific type III polyketide synthase (PKS) that catalyzes formation of a pentaketide chromone, 5,7-dihydroxy-2-methylchromone, from five molecules of malonyl-CoA, was cloned and sequenced from aloe (Aloe arborescens). Site-directed mutagenesis revealed that Met207 (corresponding to Thr197 in CHS) determines the polyketide chain length and the product specificity of the enzyme; remarkably, replacement of a single amino acid residue, Met207, with Gly yielded a mutant enzyme that efficiently produces aromatic octaketides, SEK4 and SEK4b, the products of the minimal PKS for actinorhodin (act from Streptomyces coelicolor), from eight molecules of malonyl-CoA. This provided new insights into the catalytic functions and specificities of the CHS-superfamily type III PKS enzymes.  相似文献   

16.
The antimalarial agent cladosporin is a nanomolar inhibitor of the Plasmodium falciparum lysyl‐tRNA synthetase, and exhibits activity against both blood‐ and liver‐stage infection. Cladosporin can be isolated from the fungus Cladosporium cladosporioides, where it is biosynthesized by a highly reducing (HR) and a non‐reducing (NR) iterative type I polyketide synthase (PKS) pair. Genome sequencing of the host organism and subsequent heterologous expression of these enzymes in Saccharomyces cerevisiae produced cladosporin, confirming the identity of the putative gene cluster. Incorporation of a pentaketide intermediate analogue indicated a 5+3 assembly by the HR PKS Cla2 and the NR PKS Cla3 during cladosporin biosynthesis. Advanced‐intermediate analogues were synthesized and incorporated by Cla3 to furnish new cladosporin analogues. A putative lysyl‐tRNA synthetase resistance gene was identified in the cladosporin gene cluster. Analysis of the active site emphasizes key structural features thought to be important in resistance to cladosporin.  相似文献   

17.
The catalytic potential of octaketide synthase (OKS), a plant-specific type III polyketide synthase (PKS) from Aloe arborescens, was investigated by phenylacetyl-CoA and benzoyl-CoA as starter substrates. As a result, a novel C16 pentaketide coumarin was produced from phenylacetyl-CoA, whereas benzoyl-CoA was not a good substrate of OKS. Remarkably, a structure-guided OKS N222G mutant dramatically extended the product chain length to yield four novel polyketides including C22 aromatic octaketides from the C6-C2 phenylacetyl starter, as well as a novel C19 heptaketide benzophenone from the C6-C1 benzoyl starter.  相似文献   

18.
The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones). Here we describe an octaketide-producing novel plant-specific type III PKS from aloe (Aloe arborescens) sharing 50-60% amino acid sequence identity with other plant CHS-superfamily enzymes. A recombinant enzyme expressed in Escherichia coli catalyzed seven successive decarboxylative condensations of malonyl-CoA to yield aromatic octaketides SEK4 and SEK4b, the longest polyketides known to be synthesized by the structurally simple type III PKS. Surprisingly, site-directed mutagenesis revealed that a single residue Gly207 (corresponding to the CHS's active site Thr197) determines the polyketide chain length and product specificity. Small-to-large substitutions (G207A, G207T, G207M, G207L, G207F, and G207W) resulted in loss of the octaketide-forming activity and concomitant formation of shorter chain length polyketides (from triketide to heptaketide) including a pentaketide chromone, 2,7-dihydroxy-5-methylchromone, and a hexaketide pyrone, 6-(2,4-dihydroxy-6-methylphenyl)-4-hydroxy-2-pyrone, depending on the size of the side chain. Notably, the functional diversity of the type III PKS was shown to evolve from simple steric modulation of the chemically inert single residue lining the active-site cavity accompanied by conservation of the Cys-His-Asn catalytic triad. This provided novel strategies for the engineered biosynthesis of pharmaceutically important plant polyketides.  相似文献   

19.
The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of chain extension, keto group processing, acyl chain release, and macrocyclization. We have synthesized the natural pentaketide and hexaketide chain elongation intermediates as N-acetyl cysteamine (NAC) thioesters and have used them as substrates for in vitro conversions with engineered PikAIII+TE and in combination with native PikAIII (module 5) and PikAIV (module 6) multifunctional proteins. This investigation demonstrates directly the remarkable ability of these monomodules to catalyze one or two chain extension reactions, keto group processing steps, acyl-ACP release, and cyclization to generate 10-deoxymethynolide and narbonolide. The results reveal the enormous preference of Pik monomodules for their natural polyketide substrates and provide an important comparative analysis with previous studies using unnatural diketide NAC thioester substrates.  相似文献   

20.
Six rare-earth arsenic tellurides have been synthesized by the reactions of the rare-earth elements (Ln) with As and Te at 1123 K. LaAsTe (a = 7.8354(11) A, b = 4.1721(6) A, c = 10.2985(14) A, T = 153 K), PrAsTe (a = 7.728(2) A, b = 4.1200(11) A, c = 10.137(3) A, T = 153 K), SmAsTe (a = 7.6180(16) A, b = 4.0821(9) A, c = 9.991(2) A, T = 153 K), GdAsTe (a = 7.5611(15) A, b = 4.0510(8) A, c = 9.920(2) A, T = 153 K), DyAsTe (a = 7.4951(13) A, b = 4.0246(7) A, c = 9.8288(17) A, T = 153 K), and ErAsTe (a = 7.4478(1) A, b = 4.0078(1) A, c = 9.7552(2) A, T = 153 K) crystallize with four formula units in the orthorhombic space group D2h16-Pnma. These compounds are isostructural and belong to the beta-ZrSb2 structure type. In each compound, the Ln atoms are coordinated by a tricapped trigonal prism of four As atoms and five Te atoms. The entire three-dimensional structure is built up by the motif of the LnAs4Te5 tricapped trigonal prisms. Infinite nonalternating zigzag As chains are found along the b axis, with As-As distances in these compounds ranging from 2.5915(5) to 2.6350(9) A. Conductivity measurements in the direction of these As chains indicate that PrAsTe is metallic whereas SmAsTe and DyAsTe are weakly metallic. Antiferromagnetic transitions occur in SmAsTe and DyAsTe at 3 and 9 K, respectively. DyAsTe above 9 K follows the Curie-Weiss law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号