首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed study of iron (III)–citrate speciation in aqueous solution (θ = 25 °C, Ic = 0.7 mol L−1) was carried out by voltammetric and UV–vis spectrophotometric measurements and the obtained data were used for reconciled characterization of iron (III)–citrate complexes. Four different redox processes were registered in the voltammograms: at 0.1 V (pH = 5.5) which corresponded to the reduction of iron(III)–monocitrate species (Fe:cit = 1:1), at about −0.1 V (pH = 5.5) that was related to the reduction of FeL25−, FeL2H4− and FeL2H23− complexes, at −0.28 V (pH = 5.5) which corresponded to the reduction of polynuclear iron(III)–citrate complex(es), and at −0.4 V (pH = 7.5) which was probably a consequence of Fe(cit)2(OH)x species reduction. Reversible redox process at −0.1 V allowed for the determination of iron(III)–citrate species and their stability constants by analyzing Ep vs. pH and Ep vs. [L4−] dependence. The UV–vis spectra recorded at varied pH revealed four different spectrally active species: FeLH (log β = 25.69), FeL2H23− (log β = 48.06), FeL2H4− (log β = 44.60), and FeL25− (log β = 38.85). The stability constants obtained by spectrophotometry were in agreement with those determined electrochemically. The UV–vis spectra recorded at various citrate concentrations (pH = 2.0) supported the results of spectrophotometric–potentiometric titration.  相似文献   

2.
Reaction between 3-((1R,2R)-2-{[1-(3,5-di-tert-butyl-2-hydroxy-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1a) or the derivative 3-((1R,2R)-2-{[1-(2-hydroxy-5-nitro-phenyl)-meth-(E)-ylidene]-amino}-cyclohexyl)-1-isopropyl-4-phenyl-3H-imidazol-1-ium bromide (1b) and metal halides MClx.yTHF (M = Zr, x = 4, y = 2; M = V, x = y = 3; M = Cr, x = y = 3), in THF, at −78 °C gives the metal complexes of general formula [MClx2-N,O-OC6H2R1R2C(H)N-C6H10-Im)2][Br]2 (where M = Zr, x = 2, R1 = R2 = tBu, 2; M = Zr, x = 2, R1 = H, R2 = NO2, 3; M = V, x = 1, R1 = R2 = tBu, 4; M = Cr, x = 1, R1 = R2 = tBu, 5; M = Fe, x = 0, R1 = R2 = tBu, 6; Im = 1-isopropyl-4-phenyl-3H-imidazol-1-ium-3-yl). 1H and 13C NMR spectroscopy of 2 and 3 indicate κ2-N,O-ligand coordination via the phenoxy-imine moiety with pendant imidazolium salt that is corroborated by a single crystal structure of 6. Compounds 2, 3, 4 and 5 were tested as precatalysts for ethylene polymerisation in the presence of methylaluminoxane (MAO) cocatalyst, showing low activity. Selected polymer samples were characterised by GPC showing multimodal molecular weight distributions.  相似文献   

3.
A new pentacoordinated ferrous compound [TPAFeCl]+ (TPA = tris(2-pyridylmethyl)amine) was synthesized from the reaction between H3TPA(ClO4)3 and Fe(PnPr3)2Cl2 in MeCN. The unique trigonal bipyramidal [TPAFeCl]+ complex was characterized as a S = 2 high spin complex based on the crystallographic structure, magnetic susceptibility, 1H NMR spectrum and semi-empirical ZINDO/S calculations. Crystal of [TPAFeCl]2(FeCl4)(MeCN)2 was monoclinic with a = 12.019(2) Å, b = 27.550(5) Å, c = 14.138(2) Å, β = 94.168(3)°, V = 4668.9(13) Å3, space group C/c, and the unit cell contained a racemic mixture of Δ and Λ isomers with ferrous tetrachloride anion.  相似文献   

4.
N-n-Propyl-2-pyridylmethanimine, 1, N-n-octyl-2-pyridylmethanimine, 2, N-n-lauryl-2-pyridylmethanimine, 3, and N-n-octadecyl-2-pyridylmethanimine, 4 have been used in conjunction with copper(II) bromide and azo initiators for the reverse atom transfer radical polymerisation of a range of methacrylates. AIBN to CuIIBr2 ratios of 0.5:1, 0.75:1 and 1:1 give PMMA with Mn 11 500 g mol−1 (PDi = 1.24) (at 22% conversion), 12 500 g mol−1 (PDi = 1.06) (at 83% conversion) and 10 900 g mol−1 (PDi = 1.11) (at 84% conversion), respectively. A CuIIBr2 complex is demonstrated to be needed at the start of the reaction for good control over molecular weight and polydispersity as reactions using Cu(I)Br as catalyst yielded PMMA of Mn 31 000 g mol−1 (PDi = 2.90), reactions with no copper yield PMMA of Mn 33 000 g mol−1 (PDi = 2.95). The RATRP of styrene was carried out using CuIIBr2 as catalyst. AIBN to CuIIBr2 ratio of 0.5:1, 0.75:1 and 1:1 gave PS with Mn = 12 400 g mol−1 (PDi = 1.27) at low conversion, Mn = 15 500 g mol−1 (PDi = 1.11) and 12 400 g mol−1 (PDi = 1.38), respectively at ∼85% conversion. A series of block copolymers of MMA with BMA, BzMA and DMEAMA (15 600 g mol−1 (PDi = 1.18), 13 300 g mol−1 (PDi = 1.14) 15 300 g mol−1 (PDi) = 1.16), using a PMMA macroinitiator were prepared. Emulsion polymerisation of MMA using [initiator]:[Cu(II)Br2] ratio = 0.5:1 with Brij surfactant gave a linear increase of Mn with respect to conversion, final Mn = 112 800 g mol−1 (PDi = 1.42). Further reactions were carried out with [initiator]:[Cu(II)Br2] ratio = 0.75:1 and 1:1. Both giving PMMA with Mn ∼ 32 000 g mol−1 (PDi ∼ 2.4). These reactions exhibit no control, this is because the azo initiator is present in excess and all of the monomer is consumed by a free radical polymerisation as opposed to a controlled reaction. Particle size analysis (DLS) showed the particle size between 160 and170 nm in all cases.  相似文献   

5.
In order to explore the reuse properties of oxidized chelating resin containing sulfur after adsorption, two kinds of novel chelating resins, poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfoxide (PVBSO) and poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfone (PVBSO2), were synthesized using poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfide (PVBS) as material. Their structures were confirmed by FTIR and XPS. The adsorption properties and mechanism for metal ions such as Au3+, Pt4+, Pd2+, Hg2+, Cu2+, Ni2+, Fe3+, Pb2+, Cd2+, and Zn2+ were investigated. Experimental results showed that PVBSO had good adsorption and selective properties for Au3+, Pd2+ and Cu2+ when the coexisting ion was Pt4+, Ni2+, Pb2+ or Cd2+. In the aqueous system containing Cu2+ and Pb2+ or Cu2+ and Cd2+, PVBSO2 only adsorbed Cu2+. The selective coefficients of PVBSO and PVBSO2 were αAu/Pt = 4.8, αAu/Pd = 11.8, αPd/Pt = 10.9, αCu/Ni = 2.5, αCu/Cd = 41.2, αCu/Pb = ∞, αCu/Ni = 3.0, αCu/Cd = ∞, αCu/Pb = ∞, respectively.  相似文献   

6.
The immobilization of tyrosinase onto glutaraldehyde activated streptavidine magnetic particles and subsequent retention onto a magnetized carbon paste electrode for the amperometric assay of tyrosinase inhibitors is described. Tyrosine was used as substrate as it is the first substrate in the melanogenesis process. The sensing mode is based on monitoring the decrease of the amperometric signal corresponding to the electrochemical reduction of dopaquinone enzymatically generated. This current decrease is due to the presence of inhibitors acting directly on the enzyme or inhibitors acting on the product of the enzymatic reaction, i.e. dopaquinone. The methodology is designed for the evaluation of the inhibitory potency of the most frequently used active substances in cosmetic marketed products against hyperpigmentation such as kojic acid, azelaic acid and benzoic acid. These compounds bind to the tyrosinase active center. Ascorbic acid is also investigated as it interrupts the synthesis pathway of melanin by reducing the melanin intermediate dopaquinone back to l-dopa. By comparing the obtained IC50, under the same experimental conditions, the order of their inhibitory potency was: kojic acid (IC50 = 3.7 × 10−6 M, Ki = 8.6 × 10−7 M), ascorbic acid (IC50 = 1.2 × 10−5 M), benzoic acid (IC50 = 7.2 × 10−5 M, Ki = 2.0 × 10−5 M) and azelaic acid (IC50 = 1.3 × 10−4 M, Ki = 4.2 × 10−5 M) in close agreement with literature spectrophotometric inhibition data using the soluble tyrosinase.  相似文献   

7.
Treatment of [M(H2Li)] with UCl4 in pyridine led to the formation of the dinuclear complexes [MLi(py)UCl2(py)2] and/or [Hpy][MLi(py)UCl3] [Li = N,N′-bis(3-hydroxysalicylidene)-R, R = 1,2-phenylenediamine (i = 1), R = trans-1,2-cyclohexanediamine (i = 2), R = 2-amino-benzylamine (i = 3), R = 1,3-propanediamine (i = 4), R = 2,2-dimethyl-1,3-propanediamine (i = 5); M = Cu or Ni]. The crystal structures show that the 3d and 5f ions occupy, respectively, the N2O2 and O4 cavities of the Schiff base ligand, the U4+ ion adopting a dodecahedral or pentagonal bipyramidal configuration in the neutral and anionic complexes, respectively.  相似文献   

8.
The photochemical reaction of W(CO)6 with diethylsilane has been used to generate new tungsten-silicon compounds varying in stability. The initially formed η2-silane intermediate complex [W(CO)52-H-SiHEt2)], characterized by two equal-intensity doublets with 2JH-H = 10 Hz at δ = 5.10 (1JSi-H = 217 Hz) and δ = −8.05 (1JW-H = 38 Hz, 1JSi-H = 93 Hz), was detected by the 1H NMR spectroscopy (methylcyclohexane-d14, −10 °C). The η2-silane complex was converted in the dark to give more stable species. One of them was characterized by two equal-intensity proton signals observed as doublets with 2JH-H = 5.2 Hz at δ = −8.25 and −10.39 ppm. The singlet proton resonance at δ = −9.31 flanked by 29Si and 183W satellites (1JSi-H = 43 Hz, 2JSi-H = 34 Hz, 1JW-H = 40 Hz) was assigned to the agostic proton of the W(η2-H-SiEt2) group in the most stable compound isolated from the photochemical reaction products in crystalline form. The molecular structure of the bis{(μ-η2-hydridodiethylsilyl)tetracarbonyltungsten(I)} complex [{W(μ-η2-H-SiEt2)(CO)4}2] was established by single-crystal X-ray diffraction studies. The tungsten hydride observed in the 1H NMR spectrum at δ = −9.31 was located in the structure at a chemically reasonable position between the W and Si atoms of the W-Si bond of the bridging silyl ligand. The reactivity of photochemically generated W-Si compounds towards norbornene, cyclopentene, diphenylacetylene, acetone, and water was studied. As was observed by IR and NMR spectroscopy, the η2-silane ligand in the complex [W(CO)52-H-SiHEt2)] is very easily replaced by an η2-olefin or η2-alkyne ligand.  相似文献   

9.
The complex [(IMesH2)(PPh2Cy)Cl2RuCHPh] was synthesised and shown to be an active catalyst in ring-closing metathesis of a diallylmalonate. Its phosphine exchange was investigated in C6D6 using magnetisation transfer 31P NMR spectroscopy and it was found to operate via a dissociative mechanism with k353 = 4.1 ± 0.9 s−1, ΔH = 84 ± 10 kJ mol−1 and ΔS = 4 ± 28 J mol−1 K−1.  相似文献   

10.
The kinetics of oxidative addition of CH3I to [Rh(FcCOCHCOCF3)(CO)(PPh3)], where Fc = ferrocenyl and (FcCOCHCOCF3) = fctfa = ferrocenoylacetonato, have been studied utilizing UV/Vis, IR, 1H and 31P NMR techniques. Three definite sets of reactions involving isomers of at least two distinctly different classes of RhIII-alkyl and two different classes of RhIII-acyl species were observed. Rate constants for this reaction in CHCl3 at 25 °C, applicable to the reaction sequence below, were determined as k1 = 0.00611(1) dm3 mol−1 s−1, k−1 = 0.0005(1) s−1, k3 = 0.00017(2) s−1 and k4 = 0.0000044(1) s−1 while k−3 ? k3 and k−4 ? k4 but both ≠0. The indeterminable equilibrium K2 was fast enough to be maintained during RhI depletion in the first set of reactions and during the RhIIIalkyl2 formation in the second set of reactions. From a 1H and 31P NMR study in CDCl3, Kc1 was found to be 0.68, Kc2 = 2.57, Kc3 = 1.00, Kc4 = 4.56 and Kc5 = 1.65.  相似文献   

11.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

12.
Mononuclear neutral arene ruthenium(II) β-diketonato complexes of the general formula (η6-arene)Ru(LL)Cl [LL = 1-phenyl-3-methyl-4-benzoyl pyrazol-5-one (L1), arene = C6H6 (1), p-iPrC6H4Me (2), C6Me6 (3); arene = p-iPrC6H4Me, LL = 1-benzoylacetone (L3) (8); arene = p-iPrC6H4Me, LL = dibenzoylmethane (L4) (9)] have been synthesized and their subsequent substitution reactions with NaN3 in alcohol at room temperature yielded the corresponding neutral terminal azido complexes (η6-arene)Ru(LL)N3 [LL = 1-phenyl-3-methyl-4-benzoyl pyrazol-5-one (L1), arene = C6H6 (4), p-iPrC6H4Me (6), C6Me6 (7); arene = p-iPrC6H4Me, LL = dibenzoylmethane (L4) (10)] as well as a cationic complex [(η6-p-iPrC6H4Me)Ru(L4) (PPh3)]BF4 (12) with PPh3. The [3 + 2] cycloaddition reaction of selective azido complexes with the activated alkynes dimethyl and diethyl acetylenedicarboxylates produced the arene triazolato complexes [(η6-arene)Ru(LL){N3C2(CO2R)2}] [arene = p-iPrC6H4Me, LL = L1, R = Me (13); arene = C6Me6, LL = L1, R = Me (14); arene = C6Me6, LL = acetyl acetone (L2), R = Me (15); arene = C6Me6, LL = L3, R = Me (16); arene = p-iPrC6H4Me, LL = L1, R = Et (17); arene = C6Me6, LL = L1, R = Et (18); arene = C6Me6, LL = L2, R = Et (19); arene = C6Me6, LL = L3, R = Et (20)]. With fumaronitrile the reaction yielded the triazoles [(η6-arene)Ru(LL)(N3C2HCN)] [arene = p-iPrC6H4Me, LL = L1 (21), arene = C6Me6, LL = L1 (22), arene = C6Me6, LL = L2 (23), arene = C6Me6, LL = L3 (24)]. In the above triazolato complexes only N(2) isomer was obtained. The complexes were characterized on the basis of spectroscopic data. Crystal structure of representatives complexes were determined by single crystal X-ray diffraction.  相似文献   

13.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

14.
The oxidation of a series of substituted pyridines by dimethyldioxirane (1) produced the expected N-oxides in quantitative yields. The second order rate constants (k2) for the oxidation of a series of substituted pyridines (2a-g) by dimethyldioxirane were determined in dried acetone at 23 °C. An excellent correlation with Hammett sigma values was found (ρ = −2.91, r = 0.995). Kinetic studies for the oxidation of 4-trifluoromethylpyridine by 1 were carried out in the following dried solvent systems: acetone (k2 = 0.017 M−1 s−1), carbon tetrachloride/acetone (7:3; k2 = 0.014 M−1 s−1), acetonitrile/acetone (7:3; k2 = 0.047 M−1 s−1), and methanol/acetone (7:3; k2 = 0.68 M−1 s−1). Kinetic studies of the oxidation of pyridine by 1 versus mole fraction of water in acetone [k2 = 0.78 M−1 s−1 (χ = 0) to k2 = 11.1 M−1 s−1 (χ = 0.52)] were carried out. The results showed the reaction to be very sensitive to protic, polar solvents.  相似文献   

15.
The preparation of the potassium salt of hexathiocyanate Re(IV) as a pure and crystalline solid is described. The crystal structure for [{K(H2O)2}2{Re(NCS)6}] (P21/c, a = 8.29132(8) Å, b = 15.0296(2) Å, c = 8.5249(1) Å, β = 90.885(1)°, V = 1062.21(2) Å3) revealed the formation of a 3-D coordination polymer based on K-S linkages. This organization leads to rather short intermolecular S···S contacts. The magnetic behavior for the compound is characterized by substantial antiferromagnetic interactions (with Curie-Weiss parameters C = 1.93 cm3mol−1 and θ = −171 K) that in turn lead to a weak ferromagnet with TC = 13 K.  相似文献   

16.
A new dabcodiium-templated nickel sulphate, (C6H14N2)[Ni(H2O)6](SO4)2, has been synthesised and characterised by single-crystal X-ray diffraction at 20 and −173 °C, differential scanning calorimetry (DSC), thermogravimetry (TG) and temperature-dependent X-ray powder diffraction (TDXD). The high temperature phase crystallises in the monoclinic space group P21/n with the unit-cell parameters: a = 7.0000(1), b = 12.3342(2), c = 9.9940(2) Å; β = 90.661(1)°, V = 862.82(3) Å3 and Z = 2. The low temperature phase crystallises in the monoclinic space group P21/a with the unit-cell parameters: a = 12.0216(1), b = 12.3559(1), c = 12.2193(1) Å; β = 109.989(1)°, V = 1705.69(2) Å3 and Z = 4. The crystal structure of the HT-phase consists of Ni2+ cations octahedrally coordinated by six water molecules, sulphate tetrahedra and disordered dabcodiium cations linked together by hydrogen bonds. It undergoes a reversible phase transition (PT) of the second order at −53.7/−54.6 °C on heating-cooling runs. Below the PT temperature, the structure is fully ordered. The thermal decomposition of the precursor proceeds through three stages giving rise to the nickel oxide.  相似文献   

17.
3,4,5,6-Tetrafluoro-2-nitrophenoxide (L) forms complexes with rare earth M3+ ions. X-ray crystal structures of substances with the stoichiometry Cs2ML5 · mEt2O (M = Er, m = 0; M = Er, m = 1; M = Y, m = 1.5; M = Yb, m = 1) have been determined. Each M3+ ion is coordinated to two bidentate and three monodentate L ions; Et2O does not coordinate to M3+. The complexes absorb both visible and ultraviolet light. The solid Er3+ and Yb3+ complexes have unusually long lifetimes (τ = 20.2 μs and 142 μs, respectively) for the decay of their luminescence in the near-infrared region following photoexcitation; this is attributed to the lack of C–H bonds and other high frequency oscillators that could cause vibrational quenching.  相似文献   

18.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

19.
A series of bis-phosphine monoxide (BPMO) palladium(II) and platinum(II) cationic complexes of the type [M(BPMO-κ2-P,O)2][X]2 (M = Pd, Pt; BPMO = Ph2P-(CH2)n-P(O)Ph2 with n = 1 (dppmO), 2 (dppeO), 3 (dpppO); X = BF4, TfO) were prepared from the corresponding chlorides [MCl2(BPMO-κ1-P)2] upon treatment with 2 equiv. of AgX in wet acetone/CH2Cl2 or MeOH solutions. They were characterized by 1H and 31P{1H} NMR spectroscopies and, in the case of the complex [Pt(dppeO-κ2-P,O)2][BF4]2, also by X-ray crystallography. These complexes were tested as catalysts in some Diels-Alder and oxidation reactions with different substrates. In the latter reaction Pt(II) complexes showed moderate activity, while for the former one, both classes of complexes were active in the C-C coupling, in particular the Pt(II) species showed interesting high endo/exo diasteroselectivity depending on the counteranion.  相似文献   

20.
Ph2SiCl2 and PhMeSiCl2 react with Li2E (E = S, Se, Te) under formation of trimeric diorganosilicon chalcogenides (PhRSiE)3 (R = Ph: 1a-3a, R = Me: cis/trans-4a (E = S), cis/trans-5a (E = Se)). In case of E = S, Se dimeric four-membered ring compounds (PhRSiE)2 (R = Ph: 1b-2b, R = Me: cis/trans-4b (E = S), cis/trans-5b (E = Se)) have been observed as by-products. 1a-5b have been characterized by multinuclear NMR spectroscopy (1H, 13C, 29Si, 77Se, 125Te). Four- and six-membered ring compounds differ significantly in 29Si and 77Se chemical shifts as well as in the value of 1JSiSe.The molecular structures of 2a, 3a and trans-5a reported in this paper are the first examples of compounds with unfused six-membered rings Si3E3 (E = Se, Te). The Si3E3 rings adopt twisted boat conformations. The crystal structure of 3a reveals an intermolecular Te-Te contact of 3.858 Å which yields a dimerization in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号