首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel bimetallic micro-diboranyl-oxycarbyne bridged platinum-tungsten complex [W{eta(1),micro-CO-B(NMe(2))-B(NMe(2))-(eta(5)-C(5)H(4))}(CO)(2){Pt(PPh(3))(2)}] (W-Pt) () has been synthesised by a two-step reaction, starting from the dilithiated half-sandwich compound Li[W(eta(5)-C(5)H(4)Li)(CO)(3)] () via the ansa-diboranyl-oxycarbyne tungsten complex [W{eta(1)-CO-B(NMe(2))B(NMe(2))(eta(5)-C(5)H(4))}(OC)(2)] () by use of stoichiometric amounts of B(2)(NMe(2))(2)Br(2) and [Pt(eta(2)-C(2)H(4))(PPh(3))(2)], respectively.  相似文献   

2.
Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2). This mixture, however, yielded finally the diborane(4)yl complexes [(eta(5)-C(5)H(5))(OC)(3)M[B(NMe(2))B(NMe(2))I]] (6 a, M=Mo; b, M=W) by [(eta(5)-C(5)H(5))(OC)(3)M] transfer and rearrangement. Density functional calculations were carried out for 4 c and 5 a, b.  相似文献   

3.
The tungsten aminoalkoxides W(O)(OPr(i))(3)L [L = dmae, OCH(2)CH(2)NMe(2) (1); bdmap, OCH(CH(2)NMe(2))(2) (2); tdmap, OC(CH(2)NMe(2))(3) (3)] have been synthesised. Controlled hydrolysis of 1-3 has allowed isolation of W(4)O(4)(μ-O)(6)(dmae)(4) (4), W(4)O(4)(μ-O)(4)(OPr(i))(4)(bdmap)(4) (5), W(6)O(6)(μ-O)(9)(tdmap)(6) (6), W(4)O(4)(μ-O)(6)(tdmap)(4) (7), W(4)O(4)(μ-O)(6)(tdmap)(4)·4H(2)O (7a), all of which have been characterised by X-ray crystallography. 4, 7, 7a each embody a W(4)O(6) core with adamantane structure, 5 incorporates a folded W(4)O(4) square and 6 has a trigonal prismatic W(6)O(9) at its heart. 7 decomposes in air at to give orthorhombic WO(3), while 1-3 decomposed under an autogenerated pressure (Reaction under Autogenic Pressure at Elevated Temperatures, RAPET) to form mixtures of carbon-coated WO(x) needles and carbon spherules.  相似文献   

4.
A series of novel dinuclear tungsten(IV) oxo complexes with disubstituted 4,4'-R,R-2,2'-bipyridyl (R(2)bpy) ligands of the type [(Cp*W(R(2)bpy)(mu-O))(2)][PF(6)](2) (R=NMe(2), tBu, Me, H, Cl) was prepared by hydrolysis of the tungsten(IV) trichloro complexes [Cp*W(R(2)bpy)Cl(3)]. Cyclic voltammetry measurements for the tungsten(IV) oxo compounds provided evidence for one reversible oxidation and two reversible reductions leading to the oxidation states W(V)W(IV), W(IV)W(III) and W(III)W(III). The corresponding complexes [(Cp*W(R(2)bpy)(mu-O))(2)](n+) [PF(6)](n) (n=0 for R=Me, tBu, and 1, 3 for both R=Me) could be isolated after chemical oxidation/reduction of the tungsten(IV) oxo complexes. The crystal structures of the complexes [(Cp*W(R(2)bpy)(mu-O))(2)][BPh(4)](2) (R=NMe(2), tBu) and [(Cp*W(Me(2)bpy)(mu-O))(2)](n+)[PF(6)](n) (n=0, 1, 2, 3) show a cis geometry with a puckered W(2)O(2) four-membered ring for all compounds except [(Cp*W(Me(2)bpy)(mu-O))(2)] which displays a trans geometry with a planar W(2)O(2) ring. Examining the interaction of these novel tungsten oxo complexes with protons, we were able to show that the W(IV)W(IV) complexes [(Cp*W(R(2)bpy)(mu-O))(2)][PF(6) (-)](2) (R=NMe(2), tBu) undergo reversible protonation, while the W(III)W(III) complexes [(Cp*W(R(2)bpy)(mu-O))(2)] transfer two electrons forming the W(IV)W(IV) complex and molecular hydrogen.  相似文献   

5.
Syntheses and properties of group-4 complexes incorporating the tridentate, dianionic ligand N,N-(dipyrrolyl-alpha-methyl)-N-methylamine, dpma, have been investigated. Addition of 1 equiv of H(2)dpma to Ti(NMe(2))(4) and Zr(NMe(2))(4) results in transamination with 2 dimethylamides providing Ti(NMe(2))(2)(dpma) and Zr(NMe(2))(2)(NHMe(2))(dpma), respectively. Addition of 2 equiv of H(2)dpma to Zr(NMe(2))(4) and Hf(NMe(2))(4) results in production of the homoleptic complexes Zr(dpma)(2) and Hf(dpma)(2). Conversely, treatment of Ti(NMe(2))(4) with 2 equiv of H(2)dpma does not provide Ti(dpma)(2), which was available by addition of 2 Li(2)dpma to TiCl(4). The properties of the isostructural series M(dpma)(2) were investigated by single crystal X-ray diffraction, cyclic voltammetry, (14)N NMR, and other techniques. By (14)N NMR, it was found that the pyrrolyl resonance chemical shift changes approximately linearly with the electronegativity of the metal center, which was attributed to pi-interaction between the pyrrolyl nitrogen lone pair and the metal. Other complexes produced during this study include Ti(CH(2)SiMe(3))(NMe(2))(dpma), TiCl(2)(THF)(dpma), and Ti(OCH(2)CF(3))(2)(THF)(dpma). Two isomers for Ti(CH(2)SiMe(3))(NMe(2))(dpma) were isolated and characterized.  相似文献   

6.
A series of structurally characterized new examples of pentacoordinated heteroleptic tungsten(VI)-guanidinates complexes are described. Starting out from [WCl(2)(Nt-Bu)(2)py(2)] (1) (py = pyridine) and the guanidinato transfer reagents (TMEDA)Li[(Ni-Pr)(2)CNi-Pr(2)] (2a) (TMEDA = N,N,N',N'-tetramethylethylendiamine) and [Li(NC(NMe(2))(2))](x) (2b), the title compounds [WCl(Nt-Bu)(2)[(Ni-Pr)(2)CNi-Pr(2)]] (3) and [W(Nt-Bu)(2)Cl{NC(NMe(2))(2)]](2) (6) were selectively formed by the elimination of one mole equivalent of lithium chloride. The isopropyl-substituted guanidinato ligand [(Ni-Pr)(2)CNi-Pr(2)} of monomeric 3 is N(1),N(3)-bonded to the tungsten center. The introduction of the sterically less-demanding tetramethyl guanidinato ligand [NC(NMe(2))(2)] expectedly leads to dimeric 6 exhibiting a planar W(2)N(2) ring with the guanidinato group bridging the two tungsten centers via the deprotonated imino N-atom. The remaining chloro ligand of 3 is labile and can be substituted by sterically less-crowded groups such as dimethylamido or azido that yield the presumably monomeric compounds 4 and 5, respectively. A similar treatment of 6 with sodium azide yields the dimeric azido derivative 7. Reacting [WCl(2)(Nt-Bu)(2)py(2)] directly with an excess of sodium azide leads to the dimeric bis-azide species [[W(Nt-Bu)(2)(N(3))(mu(2)-N(3))py](2)]. The new compounds were fully characterized by single-crystal X-ray diffractometry (except 2, 4, and 5), NMR, IR, and mass-spectroscopy as well as elemental analysis. Compound 5, [W(N(3))(Nt-Bu)(2)[(Ni-Pr)(2)CNi-Pr(2)]], can be sublimed at 80 degrees C, 1 Pa.  相似文献   

7.
Using an iridium-catalyzed borylation/Suzuki-Miyaura coupling sequence several 3-aryl-pyrroles were accessed; in addition, dipyrrolylmethanes incorporating these 3-arylpyrroles were synthesized. Using the monodentate pyrrolyls, Ti(NMe(2))(2)(HNMe(2))(pyr(3,5-CF3))(2) (1) and a 2,4-diarylpyrrolyl complex Ti(NMe(2))(3)(pyr(Ar/Ar')) (2) were prepared and structurally characterized. Titanium species bearing the new dipyrrolylmethane ligands Ti(NMe(2))(2)(NHMe(2))(dpm(3,5-CF3)) (3) and Ti(NMe(2))(2)(NHMe(2))(dpm(F3)) (4) were also generated. Kinetics under pseudo-first order conditions with 3 and 4 showed them to be measurably more active than the parent derivative without the electron-withdrawing aryl groups.  相似文献   

8.
A new trinuclear species containing a Ta(IV)-Ta(IV) bond, Ta(3)(μ-H)(μ-NMe(2))(μ=NBu(t))(2)(=NBu(t))(NMe(2))(5), has been formed by reductive elimination of H(2). Ta(2)H(2)(μ-NMe(2))(2)(NMe(2))(2)(=NBu(t))(2) has also been isolated. O(2) oxidizes the Ta(IV)-Ta(IV) bond to yield Ta(3)(μ(3)-O)(H)(μ=NBu(t))(μ-NMe(2))(2)(NMe(2))(4)(=NBu(t))(2) under ligand exchange. Delocalization of d electrons is discussed.  相似文献   

9.
The donor-functionalised alkoxides [Et(2)Ga(OR)](2)(R = CH(2)CH(2)NMe(2)(1), CH(CH(2)NMe(2))(2)(2), CH(2)CH(2)OMe (3), CH(CH(3))CH(2)NMe(2)(4), C(CH(3))(2)CH(2)OMe (5)) were synthesised by the 1:1 reaction of Et(3)Ga with ROH in hexane or dichloromethane at room temperature. Reaction of Et(3)Ga with excess ROH in refluxing toluene resulted in the isolation of a 1:1 mixture of [Et(2)Ga(OR)](2) and the ethylgallium bisalkoxide [EtGa(OR)(2)](R = CH(2)CH(2)NMe(2)(6) or CH(CH(3))CH(2)NMe(2)(7)). X-ray crystallography showed that compound 6 is monomeric and this complex represents the first structurally characterised monomeric gallium bisalkoxide. Homoleptic gallium trisalkoxides [Ga(OR)(3)](2) were prepared by the 1:6 reaction of [Ga(NMe(2))(3)](2) with ROH (R = CH(2)CH(2)NMe(2)(8), CH(CH(3))CH(2)NMe(2)(9), C(CH(3))(2)CH(2)OMe (10)). The decomposition of compounds 1, 4, 5 and 8 were studied by thermal gravimetric analysis. Low pressure CVD of 1 and 5 resulted in the formation of thin films of crystalline Ga(2)O(3).  相似文献   

10.
Measurements of the third-order nonlinear optical responses of solutions of the metal-metal multiply bonded complexes Mo(2)(OPr(i))(6), W(2)(OBu(t))(6), M(2)(NMe(2))(6), M(2)(O(2)CBu(t))(4), and M(2)Cl(4)(PMe(3))(4) (M = Mo, W), using picosecond degenerate four-wave mixing at 1064 nm, are reported. These complexes display only very small instantaneous electronic polarizations when excited with cross-polarized beams. When the excitation beams are similarly polarized, a significant third-order optical response is detected, which is attributable to the formation of bulk thermal excitation gratings. Time-dependent measurements support this view.  相似文献   

11.
The reactions of t-BuCCLi with a mixture of AlH(3).NMe(3) and ClAlH(2).NMe(3) in boiling toluene with the addition of [t-BuCH(2)(Bzl)NMe(2)]Cl, or a bulky beta-diketimine instead, and [n-Bu(4)N]Cl led to the carbaalanates [H(2)Al(NMe(3))(2)](2)[(AlH)(8)(CCH(2)t-Bu)(6)], 3, and [n-Bu(4)N](2)[(AlH)(8)(CCH(2)t-Bu)(6)], 4, respectively. The reaction of Me(3)N.Al(CCt-Bu)(3) 5 and AlH(3).NMe(3) in boiling toluene yielded [H(n-Bu)Al(NMe(3))(2)][(AlH)(7)(AlNMe(3))(CCH(2)t-Bu)(6)], 6, in trace amounts. The single-crystal X-ray structures of 3 and 6 are reported. The compounds 3, 4, and 6 consist of well-separated ion pairs introducing carbaalanates as weakly coordinating anions and stabilizing aluminum hydride cations.  相似文献   

12.
The reaction between B(2)(NMe(2))(4) and two equivalents of [NH(4)][PF(6)] in thf at room temperature affords the new cyclic borazine B(8)(NH)(4)(NMe(2))(8) containing a non-planar twelve-membered ring with alternating B(2)(NMe(2))(2) and NH units.  相似文献   

13.
M(NMe(2))(4) (M = Ti, Zr, Hf) were found to react with H(2)SiR'Ph (R' = H, Me, Ph) to yield H(2), aminosilanes, and black solids. Unusual amide hydride complexes [(Me(2)N)(3)M(mu-H)(mu-NMe(2))(2)](2)M (M = Zr, 1; Hf, 2) were observed to be intermediates and characterized by single-crystal X-ray diffraction. [(Me(2)N)(3)M(mu-D)(mu-NMe(2))(2)](2)M (1-d(2), 2-d(2)) were prepared through reactions of M(NMe(2))(4) with D(2)SiPh(2). Reactions of (Me(2)N)(3)ZrSi(SiMe(3))(3) (5) with H(2)SiR'Ph were found to give aminosilanes and (Me(2)N)(2)Zr(H)Si(SiMe(3))(3) (6). These reactions are reversible through unusual equilibria such as (Me(2)N)(3)ZrSi(SiMe(3))(3) (5) + H(2)SiPh(2) right arrow over left arrow (Me(2)N)(2)Zr(H)Si(SiMe(3))(3) (6) + HSi(NMe(2))Ph(2). The deuteride ligand in (Me(2)N)(2)Zr(D)Si(SiMe(3))(3) (6-d(1)) undergoes H-D exchange with H(2)SiR'Ph (R' = Me, H) to give 6 and HDSiR'Ph. The reaction of Ti(NMe(2))(4) with SiH(4) in chemical vapor deposition at 450 degrees C yielded thin Ti-Si-N ternary films containing TiN and Si(3)N(4). Ti(NMe(2))(4) reacts with SiH(4) at 23 degrees C to give H(2), HSi(NMe(2))(3), and a black solid. HNMe(2) was not detected in this reaction. The reaction mixture, upon heating, gave TiN and Si(3)N(4) powders. Analyses and reactivities of the black solid revealed that it contained -H and unreacted -NMe(2) ligands but no silicon-containing ligand. Ab initio quantum chemical calculations of the reactions of Ti(NR(2))(4) (R = Me, H) with SiH(4) indicated that the formation of aminosilanes and HTi(NR(2))(3) was favored. These calculations also showed that HTi(NH(2))(3) (3b) reacted with SiH(4) or H(3)Si-NH(2) in the following step to give H(2)Ti(NH(2))(2) (4b) and aminosilanes. The results in the current studies indicated that the role of SiH(4) in its reaction with Ti(NMe(2))(4) was mainly to remove amide ligands as HSi(NMe(2))(3). The removal of amide ligands is incomplete, and the reaction thus yielded "=Ti(H)(NMe(2))" as the black solid. Subsequent heating of the black solid and HSi(NMe(2))(3) may then yield TiN and Si(3)N(4), respectively, as the Ti-Si-N materials.  相似文献   

14.
Ta(NMe(2))(4)[N(SiMe(3))(2)] (1) undergoes the elimination of Me(3)Si-NMe(2) (2), converting the -N(SiMe(3))(2) ligand to the ═NSiMe(3) ligand, to give the imide "Ta(NMe(2))(3)(═NSiMe(3))" (3) observed as its dimer 4. CyN═C═NCy captures 3 to yield guanidinates Ta(NMe(2))(3-n)(═NSiMe(3))[CyNC(NMe(2))NCy](n) [n = 1 (5), 2 (6)]. The kinetic study of α-SiMe(3) abstraction in 1 gives ΔH(?) = 21.3(1.0) kcal/mol and ΔS(?) = -17(2) eu.  相似文献   

15.
Shi Y  Cao C  Odom AL 《Inorganic chemistry》2004,43(1):275-281
The tetradentate, trianionic ligand tris(pyrrolyl-alpha-methyl)amine (H(3)tpa) is available in 84% yield in a single step by a triple Mannich reaction involving 3 equiv of pyrrole, 3 equiv of formaldehyde, and ammonium chloride. The new ligand is readily placed on titanium by transamination on Ti(NMe(2))(4), which generates Ti(NMe(2))(tpa) (1) in 73% yield. Treating 1 with 1 equiv of 1,3-dimethyl-2-iminoimidazolidine (H-imd) in toluene provided a rare example of a titanium 2-iminoimidazolidinide, which displays some interesting structural features. Of note is the Ti-N(imd) distance of 1.768(2) A, a typical Ti-N double to triple bond distance. Reaction of Zr(NMe(2))(4) with H(3)tpa gave a complex of variable composition, probably varying in the amount of labile dimethylamine retained. However, stable discreet compounds were available by addition of THF, pyridine, or 4,4'-di-tert-butyl-2,2'-bipyridine (Bu(t)bpy) to in situ generated Zr(NMe(2))(NHMe(2))(x)(tpa). Three chloro zirconium complexes were generated using three different strategies. Treating Zr(tpa)(NMe(2))(Bu(t)bpy) (5) with ClSiMe(3) afforded Zr(tpa)(Cl)(Bu(t)bpy) (6) in 92% yield. Reaction of Li(3)tpa with ZrCl(4)(THF)(2) in THF gave a 72% yield of ZrCl(tpa)(THF)(2) (7). In addition, treatment of ZrCl(NMe(2))(3) with H(3)tpa cleanly generated ZrCl(NHMe(2))(2)(tpa) (8) in 95% yield. An organometallic zirconium complex was generated on treatment of 6 with LiCtbd1;CPh; alkynyl Zr(Ctbd1;CPh)(tpa)(Bu(t)bpy) (9) was isolated in 62% yield. 1, Ti(imd)(tpa) (2), 6, and 9 were characterized by X-ray diffraction.  相似文献   

16.
Treatment of TiCl(NMe(2))(3) with H(3)N·B(C(6)F(5))(3) results in N-H activation and ligand exchange to yield the structurally characterised salt [TiCl(NMe(2))(2)(NMe(2)H)(2)](+)[Ti[triple bond]NB(C(6)F(5))(3)(Cl)(2)(NMe(2)H)(2)](-). Cation exchange with [Me(4)N]Cl, [Ph(4)P]Cl and [(PhCH(2))Ph(3)P]Cl yields the respective ammonium and phosphonium salts of the [Ti[triple bond]NB(C(6)F(5))(3)(Cl)(2)(NMe(2)H)(2)](-) anion. X-ray crystallography reveals that the essential trigonal bipyramidal geometry and composition of the anion is retained in each of these salts despite some minor variations in the Ti-N-B angle and the nature of the interionic interactions. Electronic investigation by DFT calculations confirmed the Ti-N triple bond character implied by the experimentally determined bond length, with the HOMO and HOMO-1 having Ti-N π-bonding character. The dimethylamine ligands of the anion resist substitution by moderate bases but can be displaced by pyridine to give a pentacoordinate anion. In contrast, addition of 2,2'-bipyridyl gives a neutral octahedral complex. Treatment of the pyridine complex with TlCp results in the formation of a four coordinate anionic cyclopentadienyl complex.  相似文献   

17.
The new polycyclic borazines B(2){1,2-N(2)C(6)H(4)}(2){B(2)(NMe(2))(2)}(2), B(2){1,8-N(2)naph}(2){B(2)(NMe(2))(2)}(2) and B(2)(NPh)(4){B(2)(NMe(2))(2)}(2) have been prepared from diborate(4) anions and two equivalents of B(2)Cl(2)(NMe(2))(2) and have been structurally characterised. Aspects of their structure and bonding are discussed and comparison made with corresponding polycyclic aromatic hydrocarbons.  相似文献   

18.
The zinc hydrazide complexes [EtZn(N(SiMe(3))NMe(2))](2), [EtZn(N(Me)NMe(2))](4), and Zn(3)Et(4)(N(Et)NMe(2))(2) were synthesized by allowing excess hydrazine, HN(R)NMe(2), to react with diethyl zinc. The product of the reaction between ZnEt(2) and HN(i-Pr)NMe(2)ortho-metalated 4-(dimethylamino)pyridine (DMAP) at room temperature, producing the complex Zn[(NC(5)H(3)-p-NMe(2))ZnEt(N(i-Pr)NMe(2))](2). At elevated temperatures, Zn(3)Et(4)(N(Et)NMe(2))(2) also ortho-metalated DMAP, but [EtZn(N(Me)NMe(2))](4) did not. Single-crystal X-ray diffraction studies revealed that the hydrazide ligands in [EtZn(N(SiMe(3))NMe(2))](2) act as bridging mono-hapto amide ligands, and in Zn(3)Et(4)(N(Et)NMe(2))(2) and Zn[(NC(5)H(3)-p-NMe(2))ZnEt(N(i-Pr)NMe(2))](2) the hydrazide ligands are di-hapto.  相似文献   

19.
The structures of the parent compounds of phosphanyl- and arsanylboranes, H(2)BPH(2) and H(2)BAsH(2), were calculated by DFT-B3LYP methods. Such compounds have not previously been obtained preparatively. By applying the concept of Lewis acid/base stabilisation, [(CO)(5)W(H(2)EBH(2).NMe(3))] (E=P (3), As (4)) derivatives have been synthesised by the metathesis reactions between Li[(CO)(5)WEH(2)] and ClH(2)BNMe(3) (E=P, As). Comprehensive thermodynamic studies on these systems verify the high stability of the Lewis acid/base stabilised complexes. Unexpected based on the thermodynamic calculations, UV radiation of the phosphanylborane 3 leads to the dinuclear phosphanido-bridged complex [(CO)(8)W(2)(mu-PHBH(2).NMe(3))(2)] (5) by H(2) and CO elimination.  相似文献   

20.
Lorber C  Vendier L 《Inorganic chemistry》2011,50(20):9927-9929
Transamination reactions of primary amines with group 4 and 5 amido precursors M(NMe(2))(4) have been studied to prepare homo- and heterobimetallic complexes [(Me(2)N)(2)M(1)(μ-NR(1))(μ-NR(2))M(2)(NMe(2))(2)(NHMe(2))(x)] (x = 0, 1) with two identical or distinct bridging imido ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号