首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the adsorption properties of a charge donor organic molecule, tetrathiafulvalene (TTF), on the (110) surfaces of silver and gold by means of the generalized gradient approach of the density functional theory using periodic slab models. This molecule is the core building block of a host of molecular materials exhibiting extremely reach phase diagrams with a variety of ground states. The interfaces formed with metallic surfaces have received only limited attention, despite of their relevance. We have determined the stable adsorption sites for two unit cells representing high and low coverage, which are determinant for the adsorption properties of TTF on the surface. The preferential chemisorption is via the direct interaction of sulfur atoms with the Ag or Au atoms on top sites. All adsorbed TTF are more stable than gas phase TTF. The simulation of the vibrational spectra has permitted us to find the fingerprints of these structures to characterize them on this surface. The donor nature of TTF induces charge transfer to the metallic surfaces. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
Despite the numerous studies on the self‐assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol–gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X‐ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol–gold interface. The long‐chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short‐chain alkylthiol SAMs were adsorbed more strongly than long‐chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol–gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single‐molecule adsorption than self‐assembly, whereas for long chains, interactions between alkyl chains drive the system to self‐assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur–gold interface.  相似文献   

3.
Tetrathiafulvalene (TTF) monolayers covalently bound to oxide-free hydrogen-terminated Si(100) surfaces have been prepared from the hydrosilylation reaction involving a TTF-terminated ethyne derivative. FTIR spectroscopy characterization using similarly modified porous Si(100) substrates revealed the presence of vibration bands assigned to the immobilized TTF rings and the Si-C═C- interfacial bonds. Cyclic voltammetry measurements showed the presence of two reversible one-electron systems ascribed to TTF/TTF(.+) and TTF(.+)/TTF(2+) redox couples at ca. 0.40 and 0.75 V vs SCE, respectively, which compare well with the values determined for the electroactive molecule in solution. The amount of immobilized TTF units could be varied in the range from 1.7 × 10(-10) to 5.2 × 10(-10) mol cm(-2) by diluting the TTF-terminated chains with inert n-decenyl chains. The highest coverage obtained for the single-component monolayer is consistent with a densely packed TTF monolayer.  相似文献   

4.
The synthesis of new S(2)O(4)-crown annelated tetrathiafulvalene (TTF) derivatives substituted with one terminal thiol group is described. Self-assembled monolayers (SAMs) of these compounds have been assembled on gold and platinum surfaces, the latter substrate giving improved quality films. SAMs of TTF derivative 16b are the most stable of those we have studied. Electrochemical data for SAMs of 5a, 5b, 8, 16a, and 16b in acetonitrile reveal two reversible one-electron waves, typical of the TTF system; the current increased linearly with scan rate, indicating a surface wave response. SAMs of 8, 16a, and 16b exhibited an electrochemical response in aqueous electrolytes, which was observed between 50 and 100 cycles. Moreover, if the potential scanned was limited to the first TTF oxidation, the cyclic voltammetry response was observed for at least 1000 cycles. Metal complexation by the crown ionophore of the SAMs in acetonitrile has been monitored by a positive shift in the first oxidation potential of the TTF unit (maximum DeltaE(1)(1/2) = 80 mV for Ag(+)). We also report the X-ray crystal structure of TTF-crown derivative 21 bearing two hydroxymethyl substituents, synthesized during the course of this work. The structure is characterized by infinite chains of molecules linked by strong intrachain hydrogen bonds between the terminal hydroxy groups.  相似文献   

5.
Formation of self-assembled chains of tetrathiafulvalene (TTF) on the Cu(100) surface has been investigated by scanning tunneling microscopy and density functional theory calculations that include semiempirical van der Waals (vdW) interaction corrections. The calculations show that the chain structures observed in the experiments can only be explained by including the vdW interactions. The molecules are tilted along the chain in order to achieve maximal intermolecular interaction. The chains are metastable on the surface, which is consistent with the experimental observation that they disappear after annealing. The fact that all TTF chains observed in the experiment are short might be possibly explained by the interplay between the stabilizing vdW molecule-molecule interaction and the destabilizing rearrangement of surface atoms due to the strong molecule-substrate interaction.  相似文献   

6.
Abounding potential technological applications is one of the many reasons why adsorption of aliphatic thiols on gold surface is a subject of intense research by many research groups. Understanding and exploring the nature of adsorbed species, the site of adsorption and the nature of interaction between adsorbed species and the gold surface using experimental and theoretical investigations is an active area of pursuit. However, despite a large number of investigations to understand the atomistic structures of thiols on Au(111), some of the basic issues are still unaddressed. For instance, there is still no clear information about the mechanism of adsorption of alkylthiol on gold surface. Furthermore, the reactivity and mechanism of adsorption of alkylthiol is likely to differ when gold adatoms and/or vacancies in the gold layers are considered. In this work, we have tackled these issues by computing the stationary states involved in the thiols adsorption in order to shed light on the kinetics aspects of adsorption process. In this respect, we have considered a variety of thiols into consideration such as methylthiol, dimethylsulfide, dimethyldisulfide, thioacetates, and thiocyanates. We have also considered the cleavage mechanism in the clean and the reconstructed surface scenario and the structure, energetics and spin densities have been computed using electronic structure calculations. For all the studied cases, an homolytic cleavage of CH3S–X (X = H, CH3, SCH3, CN, and COCH3) bond has been found to occur upon adsorption on the gold surface.  相似文献   

7.
The kinetics of alkylthiol-capped gold nanoparticle (RS/Au-NP) adsorption to alkylthiol/Au self-assembled monolayers (RS/Au-SAMs) has been studied using SPR (surface plasmon resonance) spectroscopy. Variation of the alkylthiol chain terminus (CH3, COOH) and solvent (H2O, hexane) provides insight into the relative importance of solvation energies (in the context of surface energies) and RS/Au-NP structure on adsorption kinetics. The kinetics, fitted to the Langmuir kinetic model, yield adsorption and desorption rate constants. DeltaG(ads) derived from kinetic data are compared to calculated values of work of adhesion (W(adh)), derived from the corresponding surface energies. The absence of a deltaG(ads) - W(adh) correlation arises because the measured kinetics are not reporting the approach to equilibrium and/or because there are factors (i.e., local chain packing defects, surface hydration differences, or particle-particle interactions) not accounted for in calculated W(adh) values.  相似文献   

8.
Self-assembled monolayers of alkanethiols on gold have been reported to be highly stable for voltammetry experiments in aqueous electrolyte. In this work a gold electrode has been modified by first depositing one layer of an alkylthiol (S-C18) and then coating by phospholipid multilayers. Voltammetric oxidation of the antipsychotic chlorpromazine at this two-step modified electrode was followed by means of cyclic voltammetry measurements. The results give important information concerning the behaviour of the pharmacological agent at the lipid-water interface. Measurements made using the pre-concentration method allow good sensitivity improvement after 5 min accumulation time. The ability of chlorpromazine to penetrate inside the phospholipid multilayers has also been investigated under different conditions such as the nature of the phospholipid and the pH of the medium. The accumulation process seems to be closely related to the charge carried by the phospholipid and by the molecule, while the incorporation process seems to be independent of the charge carried by the phospholipid and dependent of the degree of fluidity of their hydrocarbon chains. We found through this work that the acid-base equilibrium of chlorpromazine together with its amphiphilic properties (as compared with the results of similar studies on phenothiazine) could be responsible for governing the principal aspects of the drug's behaviour toward biological membranes. Received: 6 January 1997 / Accepted: 27 February 1997  相似文献   

9.
A combined experimental and molecular-dynamics simulation study has been used to investigate energy-transfer dynamics of argon atoms when they collide with n-alkanethiols adsorbed to gold and silver substrates. These surfaces provide the opportunity to explore how surface structure and packing density of alkane chains affect energy transfer in gas-surface collisions while maintaining the chemical nature of the surface. The chains pack standing up with 12 degrees and 30 degrees tilt angles relative to the surface normal and number densities of 18.9 and 21.5 A(2)molecule on the silver and gold substrates, respectively. For 7-kJmol argon scattering, the two surfaces behave equivalently, fully thermalizing all impinging argon atoms. In contrast, these self-assembled monolayers (SAMs) are not equally efficient at absorbing the excess translational energy from high-energy, 35 and 80 kJmol, argon collisions. When high-energy argon atoms are scattered from a SAM on silver, the fraction of atoms that reach thermal equilibrium with the surface and the average energy transferred to the surface are lower than for analogous SAMs on gold. In the case of argon atoms with 80 kJmol of translational energy scattering from long-chain SAMs, 60% and 45% of the atoms detected have reached thermal equilibrium with the monolayers on gold and silver surfaces, respectively. The differences in the scattering characteristics are attributed to excitation efficiencies of different types of surface modes. The high packing density of alkyl chains on silver restricts certain low-energy degrees of freedom from absorbing energy as efficiently as the lower-density monolayers. In addition, molecular-dynamics simulations reveal that the extent to which argon penetrates into the monolayer is related to packing density. For argon atoms with 80-kJmol incident energy, we find 16% and 7% of the atoms penetrate below the terminal methyl groups of C(10) SAMs on gold and silver, respectively.  相似文献   

10.
Self-assembled monolayers (SAMs) of alkylthiol on metals, especially on gold, with photo-functionalities, such as photo-induced electron transfer, control of photo-electrochemical properties, control of electron transfer by photoisomerization, luminescence, and photo-patterning, are reviewed.  相似文献   

11.
Amphiphilic bis(tetrathiafulvalene) [bis(TTF)] macrocycles with four alkyl chains were fabricated as novel electrically active Langmuir-Blodgett (LB) films. Two TTF units were linked via [24]crown-8, [21]crown-7, and [18]crown-6 macrocycles, forming charge-transfer (CT) salts with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-p-quinodimethane (F4-TCNQ) at the air-water interface and on solid substrates. The CT salt of the amphiphilic bis(TTF)-macrocycle having a [24]crown-8 ring system formed a uniform surface morphology on mica. Using single-crystal X-ray structural analysis, the layer structure between the hydrophobic chains and the one-dimensional pi-pi stack of the CT salt was confirmed. Our results show that the bis(TTF)-macrocycle was folded at the flexible [24]crown-8 moiety, forming intramolecular pi-pi dimer structures and one-dimensional intermolecular pi-pi stacks with F4-TCNQ dimers. The open-shell electronic structure of the LB films was determined by electronic spectra, electrical conductivity, and electron spin resonance analyses. Asymmetry was introduced into the bis(TTF)-macrocycle by changing the ring size from [24]crown-8 to [21]crown-7. The surface morphology of the CT salts with F4-TCNQ was established as two-dimensional round-shape domains on mica. Further reduction of the macrocyclic ring from [21]crown-7 to [18]crown-6 resulted in a CT salt of the bis(TTF)-macrocycle with F4-TCNQ with a leaf-shape domain morphology and a typical dimension of approximately 1 microm2 on mica. In general, decreasing the macrocyclic ring size from [24]crown-8 to [21]crown-7 or [18]crown-6 affected the inter- and intramolecular interactions and the surface morphologies of LB films.  相似文献   

12.
In this work, we report the nanodecoration of microcrystals of inclusion compound (IC) of γ-cyclodextrin (γ-CD) that contain octanethiol, decanethiol and dodecanethiol. Crystals of these ICs provide a suitable environment for nucleation, growth and immobilization of gold nanoparticles that were obtained by the magnetron sputtering technique. The use of γ-CD IC substrates with a specific surface morphology (i.e., the functional group of the guest molecule faces outward preferentially from a crystal plane) is an efficient method for the preparation of AuNPs with low size dispersion, which is due to the high affinity between the functional group of the surfactant alkylthiol guest with the metal nanoparticles.  相似文献   

13.
Experimental evidences are presented supporting the existence of a new optical absorption band observed when monolayers of alkylthiol are self-assembled on gold substrate. This new absorption is centered at about 800 nm and has a very broad absorption peak. The intensity of the new band correlates with the density of molecules and the quality of the organization of the monolayer.  相似文献   

14.
The synthesis of a tetrathiafulvalene (TTF) derivative, S-[4-({4-[(2,2′-bi-1,3-dithiol-4-ylmethoxy)methyl] phenyl}ethynyl)phenyl] ethanethioate, suitable for the modification of gold nanoparticles (AuNPs), is described in this article. The TTF ligand was self-assembled on the AuNP surface through ligand exchange, starting from dodecanethiol-stabilized AuNPs. The resulting modified AuNPs were characterized by TEM, UV-Vis spectroscopy, and electrochemistry. The most suitable electrochemical method was the phase-sensitive AC voltammetry at very low frequencies of the sine-wave perturbation. The results indicate a diminishing electronic communication between the two equivalent redox centers of TTF and also intermolecular donor–acceptor interactions manifested by an additional oxidation wave upon attachment of the ligand to AuNPs.  相似文献   

15.
The synthesis and electrochemistry of a series of tetrathiafulvalene (TTF) and dithia-crown-TTF derivatives attached with one or two disulfide group(s) 7a-f are reported. The self-assembled monolayers (SAMs) of these TTF disulfides on gold were prepared and characterized by reflection-absorption infrared spectroscopy. The SAMs are extremely stable under a wide variety of conditions and over extended periods of time and show remarkable electrochemical stability upon repeated potential scans. SAMs of the crown-TTF disulfides 7c,d,f can recognize alkali metal ions, and the process can be monitored following the electrochemical potential shift of the surface-confined TTF group.  相似文献   

16.
We have revealed a substantial enhancement of third-order optical figure of merits by the synthesis of a compact molecule possessing the tetrathiafulvalene (TTF) group with two backside C=O groups. Addition of the saturated methylene chain substantially suppresses the third-order optical figure of merits and even local optical hyperpolarizabilities at lambda = 532 nm. Another TTF-derivative molecule possessing ethylenic and acetylenic chains demonstrates large hyperpolarizabilities; however, generally, the figure of merit factor decreases due to the increasing optical losses as a consequence of enhanced linear absorption. At the same time, both of the chromophores have a large nonlinear optical response. General approaches for search and design of the third-order optical materials with improved properties are given.  相似文献   

17.
A new surface-based MALDI-Tof-MS glycosyl hydrolase assay has been developed in which lipid-tagged oligosaccharides, representing defined fragments of major plant cell wall polysaccharides, are immobilized via hydrophobic interactions on an alkylthiol functionalised gold sample plate and employed in the functional screening of several purified enzymes, environmental samples and saliva.  相似文献   

18.
Eastman-AQ/四硫富瓦烯修饰碳纤维微盘电极   总被引:1,自引:0,他引:1  
利用新型的阳离子聚合物膜将四硫富瓦烯修饰到电极表面上,并研究了修饰电极的电化学行为。研究了浸泡时间、扫描速度和支持电解质对修饰电极性能的影响;循环伏安法、计时电流法和交流阻抗法表明四硫富瓦烯在膜中的扩散是控制步骤。四硫富瓦烯在膜中的第一对氧化还原峰呈现可逆的、单电子反应。用循环伏安法测得了TTF+TTFZTTF反应的平衡常数。  相似文献   

19.
1-Stearoyl-2-oleoyl phosphatidylserine (SOPS)/cholesterol bilayers, supported on a polycation/alkylthiol layer pair on a gold surface, were investigated by surface plasmon resonance (SPR) and fluorescence recovery after photobleaching. The substrate was formed by electrostatic adsorbance of a hydrated poly(diallyldimethylammonium chloride) (PDDA) layer on the negatively charged surface of a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) on gold. Lipid membranes with different SOPS/cholesterol compositions were deposited on the PDDA/MUA layer pair by vesicle fusion. When the cholesterol content was below 20%, single bilayers were deposited. Fluorescence recovery after the bleaching experiments revealed that the SOPS/cholesterol bilayers were mobile at room temperature; lateral diffusion coefficients of a fluorescence probe were approximately 1x10(-9) cm(2)/s. The kinetics of the addition of the ion-channel-forming peptide gramicidin to the supported bilayers was detected by SPR. Copyright 2000 Academic Press.  相似文献   

20.
Tetrathiafulvalene (TTF) and its derivatives were originally prepared as strong electron-donor molecules for the development of electrically conducting materials. This Review emphasizes how TTF and its derivatives offer new and in some cases little-exploited possibilities at the molecular to the supramolecular levels, as well as in macromolecular aspects. TTF is a well-established molecule whose interest goes beyond the field of materials chemistry to be considered an important building block in supramolecular chemistry, crystal engineering, and in systems able to operate as machines. At the molecular level, TTF is a readily available molecule which displays a strong electron-donor ability. However, its use as a catalyst for radical-polar crossover reactions, thus mimicking samarium iodide chemistry, has only recently been addressed. Important goals have been achieved in the use of TTF at the macromolecular level where TTF-containing oligomers, polymers, and dendrimers have allowed the preparation of new materials that integrate the unique properties of TTF with the processability and stability that macromolecules display. The TTF molecule has also been successfully used in the construction of redox-active supramolecular systems. Thus, chemical sensors and redox-switchable ligands have been prepared from TTF while molecular shuttles and molecular switches have been prepared from TTF-containing rotaxanes and catenanes. A large synthetic effort has been devoted to the preparation of the so-called organic ferromagnets, many of which are derived from TTF. The main task in these systems is the introduction of ferromagnetic coupling between the conduction electrons and localized electrons. TTF has also played a prominent role in molecular electronics where TTF-containing D-sigma-A molecules have allowed the preparation of the first confirmed unimolecular rectifier. Recently, it has been confirmed that TTF can display efficient nonlinear optic (NLO) responses in the second and third harmonic generation as well as a good thermal stability. These findings can be combined with the redox ability of TTF as an external stimuli to provide a promising strategy for the molecular engineering of switchable NLO materials. Fullerenes endowed with TTF exhibit outstanding photophysical properties leading to charge-separated (CS) states that show remarkable lifetimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号