首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In today’s era, a fascinating discipline is immensely influencing a wide miscellany in different fields of science and technology known as quantum cryptography. The amalgamation of different unconventional themes of information security and fast computing have appended inventiveness and creativity into the performance of quantum systems which exhibits astonishing outcomes surprisingly for the most complicated nonlinear models. The exploitation of chaos theory at quantum scale is a dynamical new approach towards the system of information security. Regarding this a novel image encryption approach based on modern standards of chaos, fast computing and quantum encryption has been proposed in this article. In the designed scheme, Walsh transformation is exploited to get standard image compression as to reduce data being processed resulting in fast computing. Quantum spinning and rotation operators leading new protocols, compressed data is encrypted using quantum spinning and rotation operators. For adding more confusion capability in contemplated algorithm discrete fractional chaotic Lorenz system is also accomplished. The proposed system has been validated through statistical analysis, the assessments accordingly by statistical analysis tests clearly emphasis that proposed scheme of encryption is comparatively equitable for the digital images security.

  相似文献   

2.
Based on complex Chen and complex Lorenz systems, a novel color image encryption algorithm is proposed. The larger chaotic ranges and more complex behaviors of complex chaotic systems, which compared with real chaotic systems could additionally enhance the security and enlarge key space of color image encryption. The encryption algorithm is comprised of three step processes. In the permutation process, the pixels of plain image are scrambled via two-dimensional and one-dimensional permutation processes among RGB channels individually. In the diffusion process, the exclusive-or (XOR for short) operation is employed to conceal pixels information. Finally, the mixing RGB channels are used to achieve a multilevel encryption. The security analysis and experimental simulations demonstrate that the proposed algorithm is large enough to resist the brute-force attack and has excellent encryption performance.  相似文献   

3.
Recently, a number of chaos-based image encryption algorithms that use low-dimensional chaotic map and permutation-diffusion architecture have been proposed. However, low-dimensional chaotic map is less safe than high-dimensional chaotic system. And permutation process is independent of plaintext and diffusion process. Therefore, they cannot resist efficiently the chosen-plaintext attack and chosen-ciphertext attack. In this paper, we propose a hyper-chaos-based image encryption algorithm. The algorithm adopts a 5-D multi-wing hyper-chaotic system, and the key stream generated by hyper-chaotic system is related to the original image. Then, pixel-level permutation and bit-level permutation are employed to strengthen security of the cryptosystem. Finally, a diffusion operation is employed to change pixels. Theoretical analysis and numerical simulations demonstrate that the proposed algorithm is secure and reliable for image encryption.  相似文献   

4.
Symmetric encryption is appraised as one of the key ways in which end-to-end data transfer security is guaranteed. To inject confusion in the substitution phase of the modern block encryption system, substitution boxes are utilized. The design of the S-box possesses a high influence on the strength and sturdiness of modern block encryption systems. In this document, we propose to introduce an efficient methodology of creating highly non-linear cryptographic substitution boxes as an alternate to chaotic, or algebraic construction methods. Particle Swarm Optimization is utilized in the construction of highly non-linear S-boxes, in the projected technique the initial population is randomly produced, and the position vector of particles is used in generating S-boxes. Performance appraisal of the constructed S-boxes is confirmed by standard criteria. To assess their appropriateness and their application for encryption, an image encryption scheme of the projected S-boxes is correspondingly suggested, the proposed cryptosystem is evaluated against different standard security analysis tests. The results show that the Proposed S-boxes based cryptosystem bearing strong immunity against various cryptographic attacks.  相似文献   

5.
一种改进的高性能Lorenz系统构造及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
官国荣  吴成茂  贾倩 《物理学报》2015,64(2):20501-020501
Lorenz系统是一种最具有代表性、典型性的混沌模型之一, 一直被众多学者深入研究和广泛应用.为了获取结构和动力学行为更为复杂的混沌吸引子, 不断改善Lorenz系统已成为混沌动力系统研究中的重要课题之一. 为此, 本文提出了一个具有复杂系统动力学行为的改进的Lorenz系统, 并将其用于图像信息安全保护. 在现有各种改进的Lorenz系统的基础上, 首先通过增加Lorenz系统的控制参数和改变非线性项相结合的方法构造出一种新的Lorenz 混沌系统; 其次采用微分动力系统方法深入研究该系统并获得与Lorenz系统、Bao系统、Tee系统和Y系统等具有相似的耗散性、对称性、稳定性, 以及更加复杂的混沌特性和动力学行为, 同时分析该系统所产生随机序列具有良好的相关性和复杂性; 最后将其所产生的离散伪随机序列用于图像置乱和扩散加密, 通过对图像加密结果的相邻像素相关性分析、灰度空间相关特性不确定性分析、抗差分攻击以及密钥敏感性测试, 表明本文所构造的改进的Lorenz系统应用于图像加密能获得相对较高的安全性.  相似文献   

6.
With the advancement of technology worldwide, security is essential for online information and data. This research work proposes a novel image encryption method based on combined chaotic maps, Halton sequence, five-dimension (5D) Hyper-Chaotic System and Deoxyribonucleic Acid (DNA) encoding. Halton sequence is a known low-discrepancy sequence having uniform distribution in space for application in numerical methods. In the proposed work, we derived a new chaotic map (HaLT map) by combining chaotic maps and Halton sequence to scramble images for cryptography applications. First level scrambling was done by using the HaLT map along with a modified quantization unit. In addition, the scrambled image underwent inter- and intra-bit scrambling for enhanced security. Hash values of the original and scrambled image were used for initial conditions to generate a 5D hyper-chaotic map. Since a 5D chaotic map has complex dynamic behavior, it could be used to generate random sequences for image diffusion. Further, DNA level permutation and pixel diffusion was applied. Seven DNA operators, i.e., ADD, SUB, MUL, XOR, XNOR, Right-Shift and Left-Shift, were used for pixel diffusion. The simulation results showed that the proposed image encryption method was fast and provided better encryption compared to ‘state of the art’ techniques. Furthermore, it resisted various attacks.  相似文献   

7.
To improve encryption efficiency and facilitate the secure transmission of multiple digital images, by defining the pure image element and mixed image element, this paper presents a new multiple-image encryption (MIE) algorithm based on the mixed image element and permutation, which can simultaneously encrypt any number of images. Firstly, segment the original images into pure image elements; secondly, scramble all the pure image elements with the permutation generated by the piecewise linear chaotic map (PWLCM) system; thirdly, combine mixed image elements into scrambled images; finally, diffuse the content of mixed image elements by performing the exclusive OR (XOR) operation among scrambled images and the chaotic image generated by another PWLCM system. The comparison with two similar algorithms is made. Experimental results and algorithm analyses show that the proposed MIE algorithm is very simple and efficient, which is suitable for practical image encryption.  相似文献   

8.
An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.  相似文献   

9.
浩明 《应用光学》2014,35(3):420-426
为了有效改进图像加密效果及其安全性,在对基于混沌系统及位运算的图像加密算法进行研究的基础上,提出基于组合混沌和位运算的图像加密算法,算法先对灰度图像进行位平面分解,考虑到图像的高四位含有较大的信息量,对高四位分别进行置乱变换,再与低四位构成一个整体进行置乱变换,然后组合置乱后的位平面,并与二值矩阵进行异或运算得到密文图像。实验结果表明,与像素位置置换算法和二维数据加密算法比较,改进算法具有更好的加密效率,密钥空间接近2192,具有较好的安全性,且能较好地抵御椒盐噪声和高斯噪声攻击,有效恢复出原始图像。  相似文献   

10.
孙福艳  刘树堂  吕宗旺 《中国物理》2007,16(12):3616-3623
In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a high-dimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.  相似文献   

11.
In this paper we presented a image encryption based on permutation-substitution using chaotic map and Latin square image cipher. The proposed method consists of permutation and substitution process. In permutation process, plain image is permuted according to chaotic sequence generated using chaotic map. In substitution process, based on secrete key of 256 bit generate a Latin Square Image Cipher (LSIC) and this LSIC is used as key image and perform XOR operation between permuted image and key image. The proposed method can applied to any plain image with unequal width and height as well and also resist statistical attack, differential attack. Experiments carried out for different images of different sizes. The proposed method possesses large key space to resist brute force attack.  相似文献   

12.
To address the shortcomings of weak confusion and high time complexity of the existing permutation algorithms, including the traditional Josephus ring permutation (TJRP), an improved Josephus ring-based permutation (IJRBP) algorithm is developed. The proposed IJRBP replaces the remove operation used in TJRP with the position exchange operation and employs random permutation steps instead of fixed steps, which can offer a better scrambling effect and a higher permutation efficiency, compared with various scrambling methods. Then, a new encryption algorithm based on the IJRBP and chaotic system is developed. In our scheme, the plaintext feature parameter, which is related to the plaintext and a random sequence generated by a chaotic system, is used as the shift step of the circular shift operation to generate the diffusion matrix, which means that a minor change in the source image will generate a totally different encrypted image. Such a strategy strikes a balance between plaintext sensitivity and ciphertext sensitivity to obtain the ability to resist chosen-plaintext attacks (CPAs) and the high robustness of resisting noise attacks and data loss. Simulation results demonstrate that the proposed image cryptosystem has the advantages of great encryption efficiency and the ability to resist various common attacks.  相似文献   

13.
图像加密作为信息加密领域的重要一支,其对于信息安全的重要性显得愈发重要,能够有效地对目标图像信息进行加解密逐步成为了人们的研究热点。为了提高图像加密的安全性,以混沌系统所具有的初值敏感性以及类似随机为基础,提出了采用“混沌变换”方法对图像进行置乱操作的算法,随后以此为基础结合小波理论设计一种图像加密算法。在图像的预处理阶段首先对图像采用小波变换得到四幅小波子图;随后基于混沌置换将四幅子图置乱处理;最后通过小波逆变换恢复出目标加密图像。通过数值仿真实验表明通过该方法解密获得的图像具有与原图像非常高的一致性,并且获得了较高的安全性。  相似文献   

14.
Single or multiple S-boxes are widely used in image encryption schemes, and in many image encryption schemes the asynchronous encryption structure is utilized, which separates the processes of substitution and diffusion. In this paper, we analyze the defects of this structure based on the example of an article and crack it using a simpler method. To address the defects of the asynchronous encryption structure, a novel encryption scheme is proposed, in which the structure of synchronous substitution and diffusion based on double S-boxes is utilized, so the processes of substitution and diffusion are combined together and the attackers cannot crack the cryptosystem by any of the processes. The simulation results and security analysis show that the proposed encryption scheme is safer and more efficient to expediently use in the real-time system.  相似文献   

15.
In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.  相似文献   

16.
Multimedia wireless communications have rapidly developed over the years. Accordingly, an increasing demand for more secured media transmission is required to protect multimedia contents. Image encryption schemes have been proposed over the years, but the most secure and reliable schemes are those based on chaotic maps, due to the intrinsic features in such kinds of multimedia contents regarding the pixels’ high correlation and data handling capabilities. The novel proposed encryption algorithm introduced in this article is based on a 3D hopping chaotic map instead of fixed chaotic logistic maps. The non-linearity behavior of the proposed algorithm, in terms of both position permutation and value transformation, results in a more secured encryption algorithm due to its non-convergence, non-periodicity, and sensitivity to the applied initial conditions. Several statistical and analytical tests such as entropy, correlation, key sensitivity, key space, peak signal-to-noise ratio, noise attacks, number of pixels changing rate (NPCR), unified average change intensity randomness (UACI), and others tests were applied to measure the strength of the proposed encryption scheme. The obtained results prove that the proposed scheme is very robust against different cryptography attacks compared to similar encryption schemes.  相似文献   

17.
A novel and robust chaos-based pseudorandom permutation-substitution scheme for image encryption is proposed. It is a loss-less symmetric block cipher and specifically designed for the color images but may also be used for the gray scale images. A secret key of 161-bit, comprising of the initial conditions and system parameter of the chaotic map (the standard map), number of iterations and number of rounds, is used in the algorithm. The whole encryption process is the sequential execution of a preliminary permutation and a fix number of rounds (as specified in the secret key) of substitution and main permutation of the 2D matrix obtained from the 3D image matrix. To increase the speed of encryption all three processes: preliminary permutation, substitution and main permutation are done row-by-row and column-by-column instead of pixel-by-pixel. All the permutation processes are made dependent on the input image matrix and controlled through the pseudo random number sequences (PRNS) generated from the discretization of chaotic standard map which result in both key sensitivity and plaintext sensitivity. However each substitution process is initiated with the initial vectors (different for rows and columns) generated using the secret key and chaotic standard map and then the properties of rows and column pixels of input matrix are mixed with the PRNS generated from the standard map. The security and performance analysis of the proposed image encryption has been performed using the histograms, correlation coefficients, information entropy, key sensitivity analysis, differential analysis, key space analysis, encryption/decryption rate analysis etc. Results suggest that the proposed image encryption technique is robust and secure and can be used for the secure image and video communication applications.  相似文献   

18.
A single-channel color image encryption is proposed based on a phase retrieve algorithm and a two-coupled logistic map. Firstly, a gray scale image is constituted with three channels of the color image, and then permuted by a sequence of chaotic pairs generated by the two-coupled logistic map. Secondly, the permutation image is decomposed into three new components, where each component is encoded into a phase-only function in the fractional Fourier domain with a phase retrieve algorithm that is proposed based on the iterative fractional Fourier transform. Finally, an interim image is formed by the combination of these phase-only functions and encrypted into the final gray scale ciphertext with stationary white noise distribution by using chaotic diffusion, which has camouflage property to some extent. In the process of encryption and decryption, chaotic permutation and diffusion makes the resultant image nonlinear and disorder both in spatial domain and frequency domain, and the proposed phase iterative algorithm has faster convergent speed. Additionally, the encryption scheme enlarges the key space of the cryptosystem. Simulation results and security analysis verify the feasibility and effectiveness of this method.  相似文献   

19.
An image encryption system whose cipher code stream only controlled by the secret key, but has nothing to do with the plaintext, is vulnerable to chosen plaintext attacks. Recently, an image encryption scheme using Choquet fuzzy integral and hyper chaotic Lorenz system has been proposed Liu et al. (2013), which employed plaintext-independent cipher code stream, then should be subjected to chosen plaintext attack. This paper cryptanalyzed the aforesaid encryption scheme using chosen plaintext attack, and pointed out that even if possessing good pseudorandom cipher code generation method, the encryption system is still insecure with unreasonable designed encryption scheme.  相似文献   

20.
叶国栋  黄小玲  张愉  王政霞 《中国物理 B》2017,26(1):10501-010501
In this paper, a novel image encryption algorithm is presented based on self-cited pixel summation. With the classical mechanism of permutation plus diffusion, a pixel summation of the plain image is employed to make a gravity influence on the pixel positions in the permutation stage. Then, for each pixel in every step of the diffusion stage, the pixel summation calculated from the permuted image is updated. The values from a chaotic sequence generated by an intertwining logistic map are selected by this summation. Consequently, the keystreams generated in both stages are dependent on both the plain image and the permuted image. Because of the sensitivity of the chaotic map to its initial conditions and the plain-image-dependent keystreams, any tiny change in the secret key or the plain image would lead to a significantly different cipher image. As a result, the proposed encryption algorithm is immune to the known plaintext attack (KPA) and the chosen plaintext attack (CPA). Moreover, experimental simulations and security analyses show that the proposed permutation-diffusion encryption scheme can achieve a satisfactory level of security.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号