首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
证明了如何选取矩阵X,Y和Z使得下面的分块矩阵(AXYZ)取得它的极大秩和极小秩,这里A∈C~(m×n)是一个已知矩阵,X∈C~(m×k),Y∈C~(p×n)和Z∈C~(p×k)是三个任意矩阵.  相似文献   

2.
矩阵双侧旋转与逼近   总被引:1,自引:0,他引:1  
首先,引入一些符号.用C~(m×n)表示m×n复矩阵的集合,U~(i×m)={A∈C~(l×m)│A~(II)A=I_m(l≥m)}.I_m表示m阶单位矩阵,A~H表示矩阵A的共轭转置矩阵,tr(A)表示矩阵A的迹,Re[tr  相似文献   

3.
令ζm,n表示所有的不可约m×n二部竞赛矩阵,M∈ζm,n和实数k≠0,本文主要获得了下述结论:首先研究k是M的特征值时k的几何重数,然后研究k是M的特征值的一些充要条件,最后讨论k是M的特征值时M的性质.  相似文献   

4.
大型对称不定箭形线性方程组的分解方法   总被引:4,自引:1,他引:3  
1 引言 首先考虑2×2矩阵 显然当k>1/2时,矩阵K是对称正定的,且K可以分解成Cholesky因子:当k=1/2时,K为奇异矩阵;而当k<1/2时,K为对称不定矩阵,这时K有广义Cholesky分解式:并且这种分解是稳定的,一般地我们给出定义 定义1.1 设有矩阵K∈R~((m+n)×(m+n)),若总存在排列矩阵P∈R~((m+n)×(m+n))和对称正定矩阵H∈R~(m×n)、G∈R(m×m)使得则称矩阵K为对称拟定(Symmetric quasidefinite)矩阵。  相似文献   

5.
酉不变范数下极分解的扰动界   总被引:1,自引:1,他引:0  
陈小山  黎稳 《计算数学》2005,27(2):121-128
设A是m×n(m≥n)且秩为n的复矩阵.存在m×n矩阵Q满足Q*Q=I和n×n正定矩阵H使得A=QH,此分解称为A的极分解.本文给出了在任意酉不变范数下正定极因子H的扰动界,改进文[1,11]的结果;另外也首次提供了乘法扰动下酉极因子Q在任意酉不变范数下的扰动界.  相似文献   

6.
整数环上一类二阶矩阵方程的解   总被引:1,自引:0,他引:1  
钟祥贵 《大学数学》2006,22(4):71-74
设A是一个m×m可逆矩阵,称使得An=kE(E为单位矩阵)对某个实数k成立的最小正整数n为A的阶,记为O(A).本文证明,在整数环上,2×2矩阵方程An=kE(det(A)≠0)有解当且仅当矩阵A的阶O(A)∈{1,2,3,4,6}.  相似文献   

7.
给定m×n阶矩阵A,我们给出了它的加边矩阵 为非奇的充分必要条件。其中O为r_1×r_2阶零矩阵。把M的逆矩阵记为分块形式 其中C_1为n×m、C_2为n×r_1、C_3为r_2×m、C_4为r_2×r_1阶矩阵。在一定条件下,我们证明了其中的C_1为A的广义逆矩阵A+。  相似文献   

8.
证明了可选取矩阵X和Hermitian矩阵Z,使得下面的Hermitian型分块矩阵(A XX*Z)取得它的极大秩和极小秩,这里A*=A∈Cm×m是一个已知的复矩阵,X∈Cm×k和Z*=Z∈Ck×k是两个任意的复矩阵.  相似文献   

9.
伊良忠 《数学季刊》1990,5(3):106-106
本文利用对Fuzzy矩阵分块的方法,讨论了L-自反Fuzzy矩阵的幂等性及正则性。并利用标准基的性质证明了自反的,非奇异的Fuzzy矩阵的任一广义逆是自反的。本文总设(L,∧,∨)是完备的分配格并简记为L,其最大元最小元分别为1,0,L~(m×n)表示L上全体m×n矩阵的集合。有关记号参见[1]。得到的主要结果是: 命题1 设A∈L~(n×n),A=A~2且若某aii=0(1≤i≤n)则(1)A的第i行和其余各行相关;(2)A的第i列和其余各列相关;(3)若记A(i|i_~2为划去A的第i行,第i列所得  相似文献   

10.
对任意矩阵 M,用 r( M)表示 M的秩。熟知 ,矩阵的秩是矩阵的一个重要不变量 ,对矩阵的加法和乘法 ,我们有下面两个基本的不等式。(一 )设 A、B是两个 m× n矩阵 ,则r( A +B)≤ r( A) +r( B) ( 1 )   (二 )设 A、B分别是两个 m× n、n× l矩阵 ,则r( A) +r( B) -n≤ r( AB)≤ min{ r( A) ,r( B) }它通常被称为 Sylvester不等式。对这两个不等式 ,有不同的证明和理解 ,见 [1、2 ]。在本文里 ,我们要结合矩阵的满秩分解 ,用不等式 (二 )来研究不等式 (一 ) ,从中给出 r( A+B)≤ r( A) +r( B)的一个推广形式。本文所需的矩阵知识是基…  相似文献   

11.
给定正整数 m,n,r,s(1≤m≤r,1≤n≤s),A=(α_(ij))是 r×s 周期二元方阵.如果每个非零 m×n(二元)矩阵都是 A 的一个 m×n 子方阵,A 便叫做一个(r,s;m,n)-m 阵列.如果每个 m×n(二元)矩阵都是 A 的一个 m×n 子方阵,A 便叫做一个(r,s;m,n)-M 阵列.这分别是极大长度序列(或称 m-序列)及 de Bruijn 序列(或称 M-序列)的二维推广.本文讨论 m 阵列与 M 阵列的构作方法,以及它们的性质和存在性问题.  相似文献   

12.
关于四元数矩阵乘积迹的不等式   总被引:1,自引:0,他引:1  
设 H~(m×n)为 m×n 四元数矩阵的集合,σ_1(A)≥…≥σ_n(A)为 A∈H~(mxn)的奇异值。本文证明了:1)设 A∈H~(mxm),B∈H~(mxm),r=min(m,m),则|tr(4B)|≤c r σ_i(A)σ_i(B).2)设 A_i∈H~(mxm),i=1,2,…,n,(A_1A_2…A_n)k为 A_1A_2…A_n 的任一个 k 阶主子阵,则|tr(A_1.A_2…A_n)_k|≤sun form i=1 to k σ_i(A_1)…σ_i(A_n).我们还得到四元数矩阵迹的其它一些不等式。这些结果推广和改进了文[1],[2]中的结果,进一步解决了 Bellman 猜想。  相似文献   

13.
孙继广 《计算数学》1988,10(4):438-443
§1.引言 首先说明几个符号.R~(m×n)是所有m×n实矩阵的全体,R_r~(m×n)是R~(m×n)中秩为r的矩阵的全体,R~n=R~(n×1);A~T是矩阵A的转置,I~((n))是n×n单位矩阵,O是零矩阵;λ(Λ)是矩阵A的特征值的全体,|| ||_2是向量的欧氏范数和矩阵的谱范数,|| ||_F是矩阵的Frobenius范数; N(·)表示零空间.  相似文献   

14.
两类矩阵方程的极小范数解   总被引:12,自引:3,他引:9  
设Rm×n表示所有m×n阶实矩阵的集合,SRn×n是所有n阶实对称矩阵的全体,ORn×n为n阶实正交矩阵的全体,In是n阶单位矩阵,AT、rankA分别表示矩阵A的转置与秩,||·||是矩阵的Frobenius范数.此外,对于A=(αij)s×s’,B=(βij)s×s’,A*B表示A与B的Hadamard积,其定义为,现讨论如下两个问题:  相似文献   

15.
矩阵方程ATXB+BTXTA=D的极小范数最小二乘解   总被引:1,自引:0,他引:1  
1引言本文用Rm×n表示所有m×n实矩阵全体,ORn×n,ASRn×n分别表示n×n实正交矩阵类与反对称矩阵类.‖·‖F表示矩阵的Frobenius范数,A+为矩阵A的Moore-Penrose广义逆,A*B与A(?)B分别表示矩阵4与B的Hadamard乘积及Kronecker乘积,即若A=(aij),B=(bij),则A*B=(ajibij),A(?)B=(aijB),vec4表示矩阵A的按行拉直,即若A=[aT1,aT2,…,aTm],其中ai为A的行向量,则vecA=(a1a2…am)T.设A∈Rn×m,B∈Rp×m,D∈Rm×m,我们考虑不相容线性矩阵方程ATXB+BTXTA=D(1.1)  相似文献   

16.
在文[1]的基础上,这篇注记给出了m×m复矩阵A的一类非奇异加边矩阵的特征,得到了利用这种加边矩阵的逆阵的子块求全体(1,2)-逆与Moors—Penrose逆所关联的两个定理。 本文约定:C~(m×n)表示m×n复矩阵的集合,C_r~(m×n)表示C~(m×n)的秩r的矩阵的子集,设A∈C~(m×n),通常把Penrose方程  相似文献   

17.
实对称矩阵的两类逆特征值问题   总被引:84,自引:11,他引:84  
孙继广 《计算数学》1988,10(3):282-290
§gi.两类逆特征值问题先说明一些记号.R~(m×n)是所有m×n实矩阵的全体,R~n=R~(n×1),R=R~1;SR~(n×n)是 所有n×n实对称矩阵的全体;OR~(n×n)是所有n×n实正交矩阵的全体;I~((n))是n阶单位矩阵;A~T是矩阵A的转置;A>0表示A是正定的实对称矩阵.?(A)是矩阵A的列空间;A~+是矩阵A的Moore-Penrose广义逆;P_A=AA~+表示到?(A)的正交投影.λ(A)是A的特征值的全体;λ(K,M)是广义特征值问题K_x=λM_x的特征值的  相似文献   

18.
矩阵特征值的几个扰动定理   总被引:1,自引:1,他引:0  
1 引言 设A∈C~(n×m),B∈C~(m×m)(m≤n),它们的特征值分别为{λ_k}_(k=1)~n和{μ_k}_(k=1)~m.令 R=AQ-QB (1)这里Q∈C~(n×m)为列满秩矩阵.Kahan研究了矩阵A在C~(n×m)上的Rayleigh商的性质,证明了下列定理:设A为Hermite矩阵,Q为列正交矩阵,即Q~HQ=I,而B=Q~HAQ,则存在 1,2,… ,n的某个排列π,使得 {sum from j=1 to m │μ_j-λ_(π(j))│~2}~(1/2)≤2~(1/2)‖R‖_F (2)其中R如(1)所示,‖·‖_F为矩阵的Frobenius范数.刘新国在[2]中将此定理推广到B为可对角化矩阵的情形,并且还建立了较为一般的扰动定理:设A为正规矩阵,B为可对角化矩阵;存在非奇异矩阵G,使得G~(-1)BG为对角阵,则存在1,2,…,n的某个排列π,使得 │μ_j-λ_(π(j))│≤2(2~(1/2))nK(G)_(σ_m~(-1))‖R‖_F,j=1,2,…,m. (3)  相似文献   

19.
设A∈C~(n×n),B∈C~(k×k)均为Hermite矩阵,它们的特征值分别为{λ_j}_(j=1)~n和{μ_j}_(j=1)~k(k≤n);Q∈~(n×k)为列满秩矩阵.令 (1) 则存在A的k个特征值λ_(j_2),λ_(j_2),…,λ_(j_k),使得 (2) 其中σ_k为Q的最小奇异值,||·||_2表示矩阵的谱范数.这是著名的Kahan定理·1996年曹志浩等在[2]中将(2)加强为 (3) 这是Kahan的猜想.在本文中,我们讨论将Kahan定理中“B为k阶Hermite矩阵”改为B为k阶(任意)方阵后,特征值的扰动估计,有以下结果. 定理 设A∈C~(n×n)为Hermite矩阵,其特征值为{λ_j}_(j=1)~n,B∈C~(k×k)的特征值为{μ_j}_(j=1)~k,而Q∈C~(n×k)为列满秩矩阵.则存在A的k个特征值λ_(j_1),λ_(j_2),…,λ_(j_k),使得  相似文献   

20.
矩阵反问题解的稳定性   总被引:1,自引:0,他引:1  
孙继广 《计算数学》1986,8(3):251-257
首先说明一些记号.C~(m×n):所有m×n复元素矩阵的全体,C_r~(m×n):C~(m×n)中所有秩为r的矩阵的全体.A~H:矩阵A的转置共轭.I~((n)):n行列单位矩阵.A>0表示A是正定Hermite矩阵,λ_(max)(A)与λ_(min)(A)分别表示Hermite矩阵A的最大与最小特征值,σ_(max)(A)与σ_(min)(A)分别表示矩阵A的最大与最小奇异值.A~+:A的Moors-Penrose广义逆.|| ||_2:矩阵的谱范数,|| ||_F:矩阵的Frobenius范数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号