首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cadmium content in surface water is regulated by the last European Water Framework Directive to a maximum between 0.08 and 0.25 μg L−1 depending on the water type and hardness. Direct measurement of cadmium at this low level is not straightforward in real samples, and we hereby propose a validated method capable of addressing cadmium content below μg L−1 level in natural water. It is based on solid-phase extraction using TiO2 nanoparticles as solid sorbent (0.05 g packed in mini-columns) to allow the separation and preconcentration of cadmium from the sample, combined to direct isotope dilution and detection by inductively coupled plasma mass spectrometry (ID-ICP-MS). The extraction setup is miniaturised and semi-automated to reduce risks of sample contamination and improve reproducibility. Procedural blanks for the whole measurement process were 5.3 ± 2.8 ng kg−1 (1 s) for 50 g of ultrapure water preconcentrated ten times. Experimental conditions influencing the separation (including loading pH, sample flow rates, and acid concentration in the eluent) were evaluated. With isotope dilution the Cd recovery rate does not have to be evaluated carefully. Moreover, the mathematical model associated to IDMS is known, and provides transparency for the uncertainty propagation. Our validation protocol was in agreement with guidelines of the ISO/IEC 17025 standard (chapter 5.4.5). Firstly, we assessed the experimental factors influencing the final result. Secondly, we compared the isotope ratios measured after our separation procedure to the reference values obtained with a different protocol for the digested test material IMEP-111 (mineral feed). Thirdly, we analysed the certified reference material BCR-609 (groundwater). Finally, combined uncertainties associated to our results were estimated according to ISO-GUM guidelines (typically, 3–4% k = 2 for a cadmium content of around 100 ng kg−1). We applied the developed method to the groundwater and wastewater samples ERM-CA615 and BCR-713, respectively, and results agreed with certificate values within uncertainty statements.  相似文献   

2.
The formation of a complex with 2-(5-brom-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP) and cloud point extraction have been applied to the preconcentration of cadmium followed by its determination by graphite furnace atomic absorption spectrometry (GFAAS) using octylphenoxypolyethoxyethanol (TritonX-114) as surfactant. The chemical variables affecting the separation were optimized. At pH 7.0, preconcentration of only 10 mL of sample in the presence of 0.05% TritonX-114 and 2.5 × 10−6 M 5-Br-PADAP enabled the detection of 0.04 μg/L cadmium. The enrichment factor was 21 for cadmium. The regression equation was A = 0.0439C(μg/L) + 7.2 × 10−3. The correlation coefficient was 0.9995. The precision for 10 replicate determinations at 10 μg/L Cd was 2.7% relative standard deviation (RSD). The proposed method has been applied to the determination of cadmium in water samples. The text was submitted by the authors in English.  相似文献   

3.
This paper describes the development and validation of a sequential injection (SI) anodic stripping voltammetry (ASV) method using the hanging mercury drop electrode for accumulation of the heavy metal cations Cu(II), Pb(II) and Cd(II). The method was applied to wastewater samples after proper acid digestion in open vessels to eliminate matrix effects. For a deposition time of 90 s at the flow rate of 10 μl s−1, the detection limits of the method were 0.06, 0.09 and 0.16 μmol L−1 for Cd, Pb and Cu, respectively. Under these conditions the linear dynamic range was between 0.20 and 9.0 μmol L−1 and the sampling frequency was 30 analyses per hour. The relative standard deviation of the method was 3%(n=7) at the concentration level of 2.0 μmol L−1. The accuracy of the method was evaluated by spiking the samples with known amounts of the metal cations, and by comparison with an independent analytical technique, the inductively coupled plasma atomic emission spectroscopy (ICP-AES). Average recoveries were around of 84%, and the results showed no evidence of systematic errors in comparison to the ICP-AES.  相似文献   

4.
natCd electrodeposition on a copper substrate was investigated for production of 111In radionuclide. The electrodeposition experiments were carried out by alkaline plating baths. Operating parameters such as pH, temperature, and current density are also optimized. The current efficiency was measured at different current densities. The optimum conditions of the cadmium electrodeposition were as follows: 2.35 g L−1 cadmium, pH = 13, DC current density of ca 4.27 mA cm−2 at 25 °C temperature with 62.48 μm thickness. SEM photomicrographs demonstrated fine-grained structure of the deposit obtained from the optimum bath.  相似文献   

5.
Absolute protein quantification has become an important challenge in modern bioanalytical chemistry. Among several approaches based on mass spectrometric techniques, inductively coupled plasma (ICP) as ionisation source provides element-selective and sensitive detection of heteroatoms, and thus, a potentially emerging tool in protein analysis. In this work we applied coupling of capillary liquid chromatography (μLC) and inductively coupled plasma-sector field mass spectrometry (ICP–SFMS) to the separation and determination of standard proteins. For quantification purposes, post-column isotope dilution of sulfur was applied and optimised for this type of hyphenated technique. Provided that the protein sequence is known (number of sulfur-containing amino acids, i.e. cysteines and methionines) the protein amount can then be directly calculated from the determined sulfur content in a certain protein fraction. In order to prove the reliability of the presented method, two different certified reference materials were analysed: CRM 393 (human apolipoprotein A-I) and CRM 486 (α-fetoprotein). For CRM 393 excellent agreement (37.0 ± 1.4 μmol L−1) was obtained with the certificate (37.7 ± 1.8 μmol L−1). However, the recovery rate for α-fetoprotein in CRM 486 was found to be about 60% indicating incomplete elution of the protein during the chromatographic separation.  相似文献   

6.
Behavior of cadmium(II) in aqueous solutions irradiated by accelerated electrons was studied. A concentration of 8.8 × 10−4 mol L−1 of cadmium dissolved from Cd(NO3)2 requires dose of 15 kGy to be effectively removed from the system containing 1 × 10−2 mol L−1 of HCOOK as a scavenger of OH radicals. The positive effect of deaeration with N2O or N2 was observed in the range of lower doses. The addition of solid modifiers (bentonite, active carbon, zeolite, Cu2O, NiO, TiO2 and CuO) reduced the effectivity of radiation removal of cadmium. Product of irradiation is CdCO3. On the contrary, in the system with cadmium dissolved from CdCl2 radiation reduction takes place. Systems contained organic complexants (ethylene diamine tetraacetic acid–EDTA, citric acid) were also studied. The solutions of Cd(NO3)2 containing initial concentration 2.37 × 10−4 mol L−1 of CdII were mixed with 3 × 10−4 mol L−1 EDTA. In this system the efficient degradation proceeds up to 90% at a dose of 45 kGy with addition of 5 × 10−3 mol L−1 carbonate (pH 10.5). The product of irradiation is CdCO3. The presence of 1 × 10−2 mol L−1 of HCOOK in the solution is necessary for radiation removal of cadmium complexed with citric acid (1 × 10−3 mol L−1) at pH 8. With increasing concentration of HCOOK (up to 5 × 10−2 mol L−1) decreases the pH value necessary for the radiation induced precipitation of cadmium. The best result was obtained in the system containing zeolite as a solid modifier.  相似文献   

7.
A novel method employing high-performance cation chromatography in combination with inductively coupled plasma dynamic reaction cell mass spectrometry (ICP–DRC–MS) for the simultaneous determination of the herbicide glyphosate (N-phosphonomethylglycine) and its main metabolite aminomethyl phosphonic acid (AMPA) is presented. P was measured as 31P16O+ using oxygen as reaction gas. For monitoring the stringent target value of 0.1 μg L−1 for glyphosate, applicable for drinking and surface water within the EU, a two-step enrichment procedure employing Chelex 100 and AG1-X8 resins was applied prior to HPIC–ICP–MS analysis. The presented approach was validated for surface water, revealing concentrations of 0.67 μg L−1 glyphosate and 2.8 μg L−1 AMPA in selected Austrian river water samples. Moreover, investigations at three waste water-treatment plants showed that elimination of the compounds at the present concentration levels was not straightforward. On the contrary, all investigated plant effluents showed significant amounts of both compounds. Concentration levels ranged from 0.5–2 μg L−1 and 4–14 μg L−1 for glyphosate and AMPA, respectively.  相似文献   

8.
With the objective of determining the kinetic behavior (growth, substrate, pH, and carotenoid production) and obtain the stoichiometric parameters of the fermentative process by Sporidiobolus salmonicolor in synthetic and agroindustrial media, fermentations were carried out in shaken flasks at 25°C, 180 rpm, and initial pH of 4.0 for 120 h in the dark, sampling every 6 h. The maximum concentrations of total carotenoids in synthetic (913 μg/L) and agroindustrial (502 μg/L) media were attained approximately 100 h after the start of the fermentative process. Carotenoid bioproduction is associated with cell growth and the ratio between carotenoid production and cell growth (Y P/X) is 176 and 163 μg/g in the synthetic and agroindustrial media, respectively. The pH of the agroindustrial fermentation medium varied from 4.2 to 8.5 during the fermentation. The specific growth rate (μ X) for S. salmonicolor in synthetic and agroindustrial media was 0.07 and 0.04 h−1, respectively. The synthetic medium allowed for greater productivity, obtaining maximum cell productivity (P x) of 0.08 g L−1 h−1 and maximum total carotenoid productivity (P car) of 14.2 μg L−1 h−1. Knowledge of the kinetics of a fermentative process is of extreme importance when transposing a laboratory experiment to an industrial scale, as well as making a quantitative comparison between different culture conditions.  相似文献   

9.
A quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) equipped with a dynamic reaction cell (DRC) and coupled with a desolvating nebulization system (APEX-IR) was employed to determine 17 elements (Al, As, Ba, Cd, Co, Cr, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, V, and Zr) in blood samples. Ammonia (for Al, Cr, Mn, and V) and O2 (for As and Se) were used as reacting gases. Selection of the best flow rate of the gases and optimization of the quadrupole dynamic bandpass tuning parameter (RPq) were carried out, using digested blood diluted 1 + 9 with deionized water and spiked with 1 μg L−1 of Al, Cr, Mn, V and 5 μg L−1 of As and Se. Detection limits were determined in digested blood using the 3σ criterion. The desolvating system allowed a sufficient sensitivity to be achieved to determine elements at levels of ng L−1 without detriment of signal stability. The accuracy of the method was tested with the whole blood certified reference material (CRM), certified for Al, As, Cd, Co, Cr, Mn, Mo, Ni, Pb, Sb, Se, and V, and with indicative values for Ba, Li, Sn, Sr, and Zr. The addition calibration approach was chosen for analysis. In order to confirm the DRC data, samples were also analyzed by means of sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), operating in medium (mm = 4000) and high (mm = 10,000) resolution mode and achieving a good agreement between the two techniques.  相似文献   

10.
A mid-infrared enzymatic assay for label-free monitoring of the enzymatic reaction of fructose-1,6-bisphosphatase with fructose 1,6-bisphosphate has been proposed. The whole procedure was done in an automated way operating in the stopped flow mode by incorporating a temperature-controlled flow cell in a sequential injection manifold. Fourier transform infrared difference spectra were evaluated for kinetic parameters, like the Michaelis–Menten constant (K M) of the enzyme and V max of the reaction. The obtained K M of the reaction was 14 ± 3 g L−1 (41 μM). Furthermore, inhibition by adenosine 5′-monophosphate (AMP) was evaluated, and the K MApp value was determined to be 12 ± 2 g L−1 (35 μM) for 7.5 and 15 μM AMP, respectively, with V max decreasing from 0.1 ± 0.03 to 0.05 ± 0.01 g L−1 min−1. Therefore, AMP exerted a non-competitive inhibition.  相似文献   

11.
Interactions between myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate) (phytic acid) and cadmium(II) were studied by using potentiometry (at 25 °C with the ISE-H+ glass electrode) in different metal to ligand (Phy) ratios (1:1≤Cd2+:Phy≤4:1) in NaClaq at different ionic strengths (0.1≤I/mol L−1≤1). Nine CdiHjPhy(12−2i−j)− species are formed with i=1 and 2 and 4≤j≤7; and trinuclear Cd3H4Phy2−. Dependence of complex formation constants on ionic strength was modeled by using Specific ion Interaction Theory (SIT) equations. Phytate and cadmium speciation are also dependent on the metal to ligand ratio. Stability of CdiHjPhy(12−2i−j)− species was modeled as a function of both the ligand protonation step (j) and the number of metal cations bound to phytate (i), and relationships found were used for the prediction of species other than those experimentally determined (mainly di- and tri-protonated complexes), allowing the possibility of modeling Phy and Cd(II) behavior in natural waters and biological fluids. A critical evaluation of phytate sequestering ability toward cadmium(II) has been made under several experimental conditions, and the determination of an empirical parameter has been proposed for an objective “quantification” of this ability. A thorough analysis of literature data on phytate–cadmium(II) complexes has been performed. Previous contributions to this series: [18]  相似文献   

12.
The potential effect of spectral interference on the accurate measurement of the cadmium (Cd) mass fraction in fortified breakfast cereal and a variety of dietary supplement materials using inductively coupled plasma quadrupole mass spectrometry was studied. The materials were two new standard reference materials (SRMs)—SRM 3233 Fortified Breakfast Cereal and SRM 3532 Calcium Dietary Supplement—as well as several existing materials—SRM 3258 Bitter Orange Fruit, SRM 3259 Bitter Orange Extract, SRM 3260 Bitter Orange-containing Solid Oral Dosage Form, and SRM 3280 Multivitamin/Multielement Tablets. Samples were prepared for analysis using the method of isotope dilution and measured using various operating and sample introduction configurations including standard mode, collision cell with kinetic energy discrimination mode, and standard mode with sample introduction via a desolvating nebulizer system. Three isotope pairs, 112Cd/111Cd, 113Cd/111Cd, and 114Cd/111Cd, were measured. Cadmium mass fraction results for the unseparated samples of each material, measured using the three instrument configurations and isotope pairs, were compared to the results obtained after the matrix was removed via chemical separation using anion exchange chromatography. In four of the six materials studied, measurements using the standard mode with sample introduction via the desolvating nebulizer gave results for the unseparated samples quantified with the 112Cd/111Cd isotope pair that showed a positive bias relative to the matrix-separated samples, which indicated a persistent inference at m/z?112 with this configuration. Use of the standard mode, without the desolvating nebulizer, also gave results that showed a positive bias for the unseparated samples quantified with the 112Cd/111Cd isotope pair in three of the materials studied. Collision cell/kinetic energy discrimination mode, however, was very effective for reducing spectral interference for Cd in all of the materials and isotope pairs studied, except in the multivitamin/multielement matrix (SRM 3280) where the large corrections for known isobaric interferences or unidentified interferences compromised the accuracy. For SRM 3280, matrix separation provided the best method to achieve accurate measurement of Cd.  相似文献   

13.
A new analytical method is proposed for determination of hydralazine (HZ) in pharmaceuticals—measurement of the chemiluminescence (CL) emitted after reaction with phosphoric-acidified KMnO4. The novelty of this method is the recording of the whole CL–time profile. Such a recording is possible by use of a CL-detector operating in tandem which enables the reactants to be mixed in the measurement cell only and, therefore, the CL is reaction monitored from beginning. At the precise time the pump is stopped signal recording is triggered and so CL evolution is recorded completely. The optimum chemical conditions for the determination were 0.8 mol L−1 formaldehyde, 0.3 mmol L−1 KMnO4, 4.0 mol L−1 H3PO4, and a total flow of 0.37 mL s−1. Two calibration graphs were plotted, CL intensity and area under the profile curve against HZ concentration. Exhaustive statistical analysis provided very interesting results, for example, accordance with Clayton’s theory, detection limit below 0.2 μg mL−1, and linear calibration ranges from 0.2 to 5.0 μg mL−1. This method was successfully applied to the determination of HZ in pharmaceuticals. Because they are usually formulated in association with diuretics and β-blockers, the method was used for analysis of HZ in pharmaceuticals that contained either HZ only or HZ with other hypotensive substances. Obtained and nominal content were approximately the same and experimental Student t values indicated there were no significant differences between the values.  相似文献   

14.
The liquid suspension culture of dissociated Nostoc flagelliforme cells was investigated. It was found that the growth rate of N. flagelliforme cells and the accumulation of exopolysaccharides (EPS) increased prominently when NaNO3 and KH2PO4 were added in the liquid BG-11culture medium though phosphate had little effect on EPS yield for specific mass of cells. N. flagelliforme cells grew well at 25 °C and neutral pH, however, a lower or higher temperature and weak alkaline can promote EPS accumulation. With the increase of the light intensity, the growth rate of N. flagelliforme cells and the EPS accumulation increase accordingly. When N. flagelliforme cells was cultured in BG-11 medium added with 2.5 g L−1 of NaNO3 and 0.956 g L−1 of KH2PO4 at 25 °C with 60 μmol photon m−2 s−1 of light intensity, 1.05 g L−1 cell density and 89.9 mg L−1 EPS yield were achieved respectively. Adopting the optimal conditions established in flask culture, the liquid culture of N. flagelliforme cells in 20-L photobioreactor for 16 days was conducted and a maximum biomass of 1.32 g L−1 was achieved, which was about 17.6-fold of that in the initial inoculation. The yield of EPS was 228.56 mg L−1and about 2.23-fold of that in flask culture. Moreover, the polysaccharides’ material was released into the culture medium during cell growth. These released polysaccharides (RPSs), which can be easily recovered from the medium, are favorable for industrial applications.  相似文献   

15.
Analytical methods used for the isotope dilution inductively coupled plasma mass spectrometric (ID-ICP-MS) measurement of Cd at μg kg−1 and sub-μg kg−1 levels are described and applied to the certification of new dietary supplement, blood, and serum Standard Reference Materials (SRMs). The materials are: SRM 3240 Ephedra sinica Stapf Aerial Parts, SRM 3241 Ephedra sinica Stapf Native Extract, SRM 3243 Ephedra-Containing Solid Oral Dosage Form, SRM 3244 Ephedra-Containing Protein Powder, SRM 966 Toxic Metals in Bovine Blood, Level 1 (L1) and Level 2 (L2), and SRM 1598a Animal Serum. The concentration of Cd in the materials ranges from 120 μg kg−1 down to 0.03 μg kg−1. At these levels, the factors that most influence the accuracy of the ICP-MS data are the procedure blank and spectral and nonspectral interferences. Nonspectral interference, caused by the high concentration of dissolved solids in the matrices investigated, resulted in signal suppression. Matrix separation was used to enhance signal intensity and to reduce spectral interference for the accurate determination of Cd in SRM 1598a and SRM 3244. Chromatographic separation procedures using Chelex for SRM 1598a and anion exchange for SRM 3244 were optimized to achieve the desired separation characteristics without substantially increasing the procedure blank. Sensitivity for the determination of Cd in serum was additionally enhanced through the use of desolvation nebulization. We determined that separations were not required for the accurate ICP-MS determination of Cd in SRM 3240, SRM 3241, SRM 3243, and SRM 966 L2 under optimized analysis conditions. These samples were diluted to a minimum volume and introduced to the ICP-MS via low flow (40–100 μL/min) microconcentric nebulizers. SRM 966 L1 was also analyzed directly, but results were highly variable. The ID-ICP-MS sample preparation and ratio measurement protocols described here resulted in total expanded uncertainties of less than 1% for the determination of 90.85 μg kg−1 Cd in SRM 3240, and less than 10% total expanded uncertainty for the determination of 0.0468 μg kg−1 Cd in SRM 1598a.  相似文献   

16.
 A tungsten-rhodium coating on the integrated platform of a transversely heated graphite atomiser (THGA) was used as a permanent chemical modifier for the determination of Cd in sediment slurries by electrothermal atomic absorption spectrometry. Slurries were ultrasonicated during 20 s before being delivered to the previously W-Rh treated platform. The permanent W-Rh modifier remains stable by approximately 250 measurements when 20 μl of slurries containing up to 1.0% m/v are delivered into the atomiser. In addition, the permanent modifier increases the tube lifetime up to 720 analytical firings. Also, when the W-Rh permanent modifier was employed, there was less variation of the slope of the analytical curves during the total atomiser lifetime, resulting in a decreased need of re-calibration during routine analysis, increasing the sample throughput. The atomiser lifetime was limited to the THGA wall durability, because the W-Rh treated platform was intact after more than 720 analytical firings. Detection limits based on integrated absorbance for 1.0% m/v slurries were 1.5 ng g−1 Cd for 250 μg W +200 μg Rh permanent modifier and 11.5 ng−1 Cd for 5 μg Pd +3 μg Mg(NO3)2. Results for the determination of cadmium in sediment slurries using the W-Rh permanent modifier were in agreement with those obtained with dissolved sample solutions by using Pd + Mg(NO3)2, since no statistical differences were found by the paired t-test at the 99% level. Received September 6, 1999. Revision December 1, 1999.  相似文献   

17.
A fed-batch culture system with constant feeding (glucose 80 g L−1, 0.25 ml min−1) was used to study the influence of glucose on cell dry weight and exopolysaccharides production from submerged Tremella fuciformis spores in a 5-L stirred-tank bioreactor. The results showed that high levels of cell mass (9.80 g L−1) and exopolysaccharides production (3.12 g L−1) in fed-batch fermentation were obtained after 1 h of feeding, where the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.267 d−1 and 0.14 g g−1. Unlike batch fermentation, maximal cell mass and exopolysaccharides production merely reached 7.11 and 2.08 g L−1; the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.194 d−1 and 0.093 g g−1, respectively. It is concluded that the synthesis of exopolysaccharides can be promoted effectively when feeding glucose at a late exponential phase.  相似文献   

18.
A rapid, accurate, and precise method is described for the determination of Pb in wine using continuous-flow hydride generation atomic fluorescence spectrometry (CF-HGAFS). Sample pretreatment consists of ten-fold dilution of wine followed by direct plumbane generation in the presence of 0.1 mol L−1 HCl and 1% m/v K3[Fe(CN)6] with 1% m/v NaBH4 as reducing agent. An aqueous standard calibration curve is recommended for Pb quantification in wine sample. The method provides a limit of detection and a limit of quantification of 0.3 μg L−1 and 1 μg L−1, respectively. The relative standard deviation varies between 2–6% (within-run) and 4–11% (between-run) at 3–30 μg L−1 Pb levels in wine. Good agreement has been demonstrated between results obtained by CF-HGAFS and direct electrothermal atomic absorption spectrometry in analyses of red and white wines within the concentration range of 9.2–25.8 μg L−1 Pb.  相似文献   

19.
Summary An ion-chromatographic procedure is described for the determination of selenium (VI) at μg L−1 level in the presence of anions and heavy metal ions. Maximum permissible concentrations and effects from each interfering substance were investigated for the Se concentration range 12.5–1,000 μg L−1. The method, optimized for the detection of SeO 4 2− , gives results suitable for speciation analysis. Total selenium can be determined after complete conversion to selenate ion by oxidation with KMnO4. The detection limit of selenium is 4.8 μg L−1 (0.96 ng for 200 μL sample). Paper presented at the 41st Pittsburgh Conference, New York, March 5–9, 1990.  相似文献   

20.
A survey of contamination of surface and drinking waters around Lake Maggiore in Northern Italy with polar anthropogenic environmental pollutants has been conducted. The target analytes were polar herbicides, pharmaceuticals (including antibiotics), steroid estrogens, perfluorooctanesulfonate (PFOS), perfluoroalkyl carboxylates (including perfluorooctanoate PFOA), nonylphenol and its carboxylates and ethoxylates (NPEO surfactants), and triclosan, a bactericide used in personal-care products. Analysis of water samples was performed by solid-phase extraction (SPE) then liquid chromatography–triple-quadrupole (tandem) mass spectrometry (LC–MS–MS). By extraction of 1-L water samples and concentration of the extract to 100 μL, method detection limits (MDLs) as low as 0.05–0.1 ng L−1 were achieved for most compounds. Lake-water samples from seven different locations in the Southern part of Lake Maggiore and eleven samples from different tributary rivers and creeks were investigated. Rain water was also analyzed to investigate atmospheric input of the contaminants. Compounds regularly detected at very low concentrations in the lake water included: caffeine (max. concentration 124 ng L−1), the herbicides terbutylazine (7 ng L−1), atrazine (5 ng L−1), simazine (16 ng L−1), diuron (11 ng L−1), and atrazine-desethyl (11 ng L−1), the pharmaceuticals carbamazepine (9 ng L−1), sulfamethoxazole (10 ng L−1), gemfibrozil (1.7 ng L−1), and benzafibrate (1.2 ng L−1), the surfactant metabolite nonylphenol (15 ng L−1), its carboxylates (NPE1C 120 ng L−1, NPE2C 7 ng L−1, NPE3C 15 ng L−1) and ethoxylates (NPE n Os, n = 3-17; 300 ng L−1), perfluorinated surfactants (PFOS 9 ng L−1, PFOA 3 ng L−1), and estrone (0.4 ng L−1). Levels of these compounds in drinking water produced from Lake Maggiore were almost identical with those found in the lake itself, revealing the poor performance of sand filtration and chlorination applied by the local waterworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号