首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The influence of doping with niobium on the structure and oxygen nonstoichiometry of strontium ferrite SrFe1 − x Nb x O3 − δ (x = 0.05, 0.1, 0.2, 0.3, and 0.4) was studied. The content of oxygen in the doped derivatives was determined by coulometric titration as a function of temperature (650–950°C) and oxygen partial pressure in the gas phase (10−4−1 atm). The partial molar enthalpies Δ(x, δ) and entropies Δ(x, δ) of oxygen in SrFe1 − x Nb x O3 − δ were calculated. An analysis of Δ(x, δ) dependences showed that the model of a random distribution of ions and vacancies over accessible sites in the oxygen sublattice allowed the experimental data to be described satisfactorily. An increase in the partial enthalpy Δ(x, δ) as nonstoichiometry δ decreased was indicative of weak repulsive interactions between oxygen ions in the structure of SrFe1 − x Nb x O3 − δ. Original Russian Text ? P.V. Anikina, A.A. Markov, M.V. Patrakeev, I.A. Leonidov, V.L. Kozhevnikov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 5, pp. 811–817.  相似文献   

2.
A brown and transparent ionic liquid (IL), [C4mim][FeCl4], was prepared by mixing anhydrous FeCl3 with 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]), with molar ratio 1/1 under stirring in a glove box filled with dry argon. The molar enthalpies of solution, Δs H m, of [C4mim][FeCl4], in water with various molalities were determined by a solution-reaction isoperibol calorimeter at 298.15 K. Considering the hydrolyzation of anion [FeCl4] in dissolution process of the IL, a new method of determining the standard molar enthalpy of solution, Δs H m0, was put forward on the bases of Pitzer solution theory of mixed electrolytes. The values of Δs H m0 and the sum of Pitzer parameters: and were obtained, respectively. In terms of thermodynamic cycle and the lattice energy of IL calculated by Glasser’s lattice energy theory of ILs, the dissociation enthalpy of anion [FeCl4], ΔH dis≈5650 kJ mol−1, for the reaction: [FeCl4](g)→Fe3+(g)+4Cl(g), was estimated. It is shown that large hydration enthalpies of ions have been compensated by large the dissociation enthalpy of [FeCl4] anion, Δd H m, in dissolution process of the IL.  相似文献   

3.
The thermodynamic stability of the LaBr 4 ? anion was for the first time studied by high-temperature mass spectrometry and nonempirical quantum-chemical methods. The experimental and theoretical enthalpies of the reaction $ LaBr_4^ - = Br^ - + LaBr_3 The thermodynamic stability of the LaBr4 anion was for the first time studied by high-temperature mass spectrometry and nonempirical quantum-chemical methods. The experimental and theoretical enthalpies of the reaction were Δr H°(298.15 K) = 302 ± 14 and 303 kJ/mol, respectively. The value Δf H° (LaBr4, g, 298.15 K) = −1105 ± 14 kJ/mol was recommended as the enthalpy of formation of the LaBr4 anion. Original Russian Text ? M.F. Butman, L.S. Kudin, V.B. Motalov, D.A. Ivanov, V.V. Sliznev, K.W. Kr?mer, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 5, pp. 885–890.  相似文献   

4.
The low-pressure discharge flow technique with resonance fluorescence monitoring of OH has been applied to study the kinetics of the overall reaction:
(1)
The rate constant of k 1 = (1.09 ± 0.09(1σ)) × 10−12 cm3 molecule−1 s−1 has been determined at T = 297 ± 3 K. This value agrees well with the IUPAC recommendation which is based on photolysis kinetic studies.  相似文献   

5.
Three thermal effects on heating/cooling of K2TaF7 in the temperature interval of 680–800°C were investigated by the DSC method. The values determined for the enthalpy change of the individual processes are: ΔtransIIHm(K2TaF7; 703°C) = 1.7(2) kJ mol−1, ΔtransIHm(K2TaF7; 746°C) = 19(1) kJ mol−1 and ΔtransIIIHm(K2TaF7; 771°C) = 13(1) kJ mol−1. The first thermal effect was attributed to a solid-solid phase transition; the second to the incongruent melting of K2TaF7 and the third to mixing of two liquids. These findings are supported by in situ neutron powder diffraction experiments performed in the temperature interval of 654–794°C.   相似文献   

6.
Melting enthalpy and mixing enthalpy of binary system 2,4-dinitrotoluene and nitrocellulose were determined by DSC method. The maximum value of mixing enthalpy was H max M=1.38 kJ mol−1 for molar fraction x w24DNT = 0.501. The Flory-Huggins parameter (c) was estimated. The solubility curves and glass transition temperatures were predicted and compared with the experimental results. The measurements were performed for the samples with different times of storage at room temperature. The analysis of melting peaks for the mixture leads to the conclusion that for the long periods of storage the melting of 2,4-dinitrotoluene takes place in the confined spaces (pores) and unconfined space (bulk). The crystallization and melting is observed during the short time of storage in mixtures with low nitrocellulose content and in the case of mixtures with a large amount of NC the glass transition is additionally observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Condensed and gas phase enthalpies of formation of 3:4,5:6-dibenzo-2-hydroxymethylene-cyclohepta-3,5-dienenone (1, (−199.1 ± 16.4), (−70.5 ± 20.5) kJ mol−1, respectively) and 3,4,6,7-dibenzobicyclo[3.2.1]nona-3,6-dien-2-one (2, (−79.7 ± 22.9), (20.1 ± 23.1) kJ mol−1) are reported. Sublimation enthalpies at T=298.15 K for these compounds were evaluated by combining the fusion enthalpies at T = 298.15 K (1, (12.5 ± 1.8); 2, (5.3 ± 1.7) kJ mol−1) adjusted from DSC measurements at the melting temperature (1, (T fus, 357.7 K, 16.9 ± 1.3 kJ mol−1)); 2, (T fus, 383.3 K, 10.9 ± 0.1) kJ mol−1) with the vaporization enthalpies at T = 298.15 K (1, (116.1 ± 12.1); 2, (94.5 ± 2.2) kJ mol−1) measured by correlation-gas chromatography. The vaporization enthalpies of benzoin ((98.5 ± 12.5) kJ mol−1) and 7-heptadecanone ((94.5 ± 1.8) kJ mol−1) at T = 298.15 K and the fusion enthalpy of phenyl salicylate (T fus, 312.7 K, 18.4 ± 0.5) kJ mol−1) were also determined for the correlations. The crystal structure of 1 was determined by X-ray crystallography. Compound 1 exists entirely in the enol form and resembles the crystal structure found for benzoylacetone.  相似文献   

8.
The decay kinetics of hydrated electron (eaq ) formed upon photolysis of aqueous solutions of sodium pyrene-1,3,6,8-tetrasulfonate at λ = 337 nm in the presence of phosphate anions (up to 2 mol L−1) was studied by nanosecond laser-pulse photolysis in a wide range of pH (3.5–10) and ionic strength (I, up to 2 mol L−1) values. At high pH values, where the HPO4 2− ions dominate, the eaq decay kinetics depends only slightly on phosphate concentration (rate constant for the reaction is at most 2·105 L mol−1 s−1). The H2PO4 ions react with eaq at a rate constant of 2.8·106 L mol−1 s−1 (I = 0), which increases linearly with the parameter in accordance with the Debye-Hückel theory. The rate constant for quenching of eaq by H3PO4 at pH ≤ 4 decreases linearly with the parameter due to the secondary salt effect and equals 1.6·109 L mol−1 s−1 at I = 0. The logarithm of the rate constant for quenching of eaq by phosphates is linearly related to the number of the O-H bonds in the phosphate molecule. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1277–1280, July, 2007.  相似文献   

9.
The crystal and molecular structures of the ferrimagnetic bimetallic complex salt hexaamminechromium(III) hexachloroferrate(III), [Cr(NH3)6][FeCl6], have been determined from single-crystal, three-dimensional x-ray diffraction counter data. The compound crystallizes as orange coloured crystals in the space groupC2/c of the monoclinic system with Z=4 and has cell dimensionsa=11.325(1) ?,b=11.387(1) ?,c=11.233(1) ?, and β=90.83(1)?. The structure was refined by using segmented block diagonal least-squares techniques to discrepancy indices R and Rw of 0.0233 and 0.0285, respectively. The metal ions occupy sites with symmetry and are nearly octahedrally coordinated. In the [FeCl6]3− anion there are three independent Fe−Cl distances with a mean of 2.393(2) ?, and the maximum angular deviation from octahedral geometry is 1.20. In the [Cr(NH3)6]3+ cation, the mean of the three independent Cr−N distances is 2.079 (7) ?, and the maximum angular deviation from octahedral geometry is 0.70. The structural data provide an explanation for the observed quadrupole splitting of 0.214 mms−1 as seen in the M?ssbauer spectrum at 292.6 K and reveal superexchange pathwaysvia close amine proton-chloride anion contacts with lead to 3D-ferrimagnetic ordering near 2.8 K.  相似文献   

10.
The melting process of NC is studied by using modulated differential scanning calorimetry (MDSC) technique, the microscope carrier method for measuring the melting point and the simultaneous device of the solid reaction cell in situ/RSFT-IR. The results show that the endothermic process in the MDSC curve is reversible. It is caused by the phase change from solid to liquid of the mixture of initial NC, decomposition partly into condensed phase products. The values of the melting point, melting enthalpy (Hm), melting entropy (Sm), the enthalpy of decomposition (Hdec) and the heat-temperature quotient (Sdec) obtained by the MDSC curve of NC at a heating rate of 10 K min–1 are 476.84 K, 205.6 J g–1, 0.4312 J g–1 K–1, –2475.0 J g–1 and –5.242 Jg–1K–1, respectively. The MDSC results of NC with different nitrogen contents show that with increasing the nitrogen content in NC, the absolute values of Hm, Sm, Hdec and Sdec increase.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
The stoichiometric solubility constant of eitelite (NaMg 0.5 CO 3 +2H+ ⇄ Na++0.5Mg 2+ +CO 2 (g)+H 2 O, log*K pso I =14.67±0.03 was determined at I=3 m (mol kg−1) (NaClO 4 ) and 25°C. The stability of magnesium (hydrogen-)carbonato complexes in this ionic medium was explicitely taken into account. Consequently, trace activity coefficients of free ionic species, calculated from the Pitzer model with ion-interaction parameters from the literature, were sufficient for an evaluation of the thermodynamic solubility constants and Gibbs energies of formation for eitelite (−1039.88±0.60), magnesite (−1033.60±0.40), hydromagnesite (−1174.30±0.50), nesquehonite (−1724.67±0.40), and brucite (−835.90±0.80 kJ-mol −1 ). The increasing solubilities of nesquehonite and eitelite at higher sodium carbonate molalities were explained by invoking a magnesium dicarbonato complex (Mg2++2CO 3 2− ⇄ Mg(CO3) 2 2− , log βz = 3.90 ± 0.08). A set of ion-interaction parameters was obtained from solubility and dissociation constants for carbonic acid in 1 to 3.5 m NaClO 4 media which reproduce these constants to 0.02 units in log K. The following Pitzer parameters are consistent with the previously studied formation of magnesium (hydrogen-)carbonato complexes in 3m NaClO 4 . The model and Gibbs functions of solid phases derived here reproduce original solubility data (−log [H+], [Mg 2+ ] tot ) measured in perchlorate medium within experimental uncertainty. Presented at the XXII International Conference on Solution Chemistry, July 14–19, 1991, Linz, Austria.  相似文献   

12.
The ion pair formation of NaSO 4 has been investigated potentiometrically in 1M NaClO 4 medium at 25°C using two different sodium-selective indicator electrodes and a perchlorate reference electrode. The stability constant of NaSO 4 obtained in this study was . Although is small, it lowers the free sulfate concentration drastically in 1M NaClO 4 medium and is a factor which should be considered in the use of NaClO 4 as inert supporting electrolyte.  相似文献   

13.
The mixing and melting enthalpy of the binary system nitrocellulose+2,6-dinitrotoluene was determined using the DSC method. The mixing enthalpy of the components was calculated. At the melting temperature the maximum value of the mixing enthalpy for the mole fractionx w26DNT=0.607 is equal H M max= −3.41 kJ mol−1. Measurements of the melting process (second measurement) were conducted after a storage period of several days at room temperature. Analysis of the melting peaks shows that the melting process of 26DNT takes place in pores of the micro-fiber and bulk outside the fibers. In the case of a mass fraction of x w26DNT>0.9 the melting process takes place in the bulk, which suggests that in the case of such concentrations separation of the micro-fibers occurs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The acid catalysed dissociation of the copper(II) and nickel(II) complexes of 5,7-dioxo-1,4,8,11-tetra-azacyclo-tetradecane (dioxocyclam = LH2) has been studied using nitric acid solutions over a range of temperatures at I = 1.0 mol dm si-3. The kinetic data for the copper complex can be fitted to the rate expression k obs = k K 2[H+]/(1 + K 2 [H+] with K = 24.7s−1 and K 2 = 65dm3mol−1 at 25° C. The analogous constants for the nickel(II) complex are K = 3.3s−1 and K 2 = 45dm3mol−1. The acid dissociation can be rationalized in terms of the kinetic scheme
  相似文献   

15.
The heat of solution of GaCl3 and heats of dilution of single GaCl3 solutions in water and of mixed GaCl3−HCl solutions in HCl solutions (with a fixed HCl concentration of 0.1337 mol-kg−1 HCl) up to 4 mol-kg−1 GaCl3 were measured at 25°C. While in the acid solutions hydrolysis is suppressed to below 0.5% of total gallium concentration, the measurements in water allow evaluation of the effect of hydrolysis on the relative enthalpy. The Pitzer interaction model for excess properties of aqueous electrolytes was used to interpret the change in relative enthalpy with concentration. Pitzer parameters were derived by statistical inference using ridge regression. Their physical significance is supported by the heat of solution data. The measurements yield the following results for standard heats of formation and Pitzer parameters for the relative molar enthalpy at 25°C: With these parameters the overall variance in the partial molar heat of solution at infinite dilution, extrapolated from the present experiments, is minimized to 0.35 kJ2-mol−2, while the experimental apparent molar heats of dilution are reproduced on average within 2.7 kJ-mol−1.  相似文献   

16.
Inthefieldofpolymerphysics,thecrystallinestateofpolymershaslongbeenofinterest.TheexistenceofpolymersinglecrystalwasfirstdiscoveredbyJaccodine[1]in1955.Thethicknessofmostsolutiongrowthcrystalsisfoundtobeoftheorderof~10nm.Thisobservationissomewhatsurprising.S…  相似文献   

17.
The thermal behavior of nicotinic acid under inert conditions was investigated by TG, FTIR and TG/DSC-FTIR. The results of TG/DSC-FTIR and FTIR indicated that the thermal behavior of nicotinic acid can be divided into four stages: a solid-solid phase transition (176–198°C), the process of sublimation (198–232°C), melting (232–263°C) and evaporation (263–325°C) when experiment was performed at the heating rate of 20 K min−1. The thermal analysis kinetic calculation of the second stage (sublimation) and the fourth stage (evaporation) were carried out respectively. Heating rates of 1, 1.5, 2 and 3 K min−1 were used to determine the sublimation kinetics. The apparent activation energy, pre-exponential factor and the most probable model function were obtained by using the master plots method. The results indicated that sublimation process can be described by one-dimensional phase boundary reaction, g(α)=α. And the ‘kinetic triplet’ of evaporation process was also given at higher heating rates of 15, 20, 25, 30 and 35 K min−1. Evaporation process can be described by model of nucleation and nucleus growing, .  相似文献   

18.
The kinetics of the reactions of ClO3 with HSO3 and H2SO3 was studied by measuring the concentration of [Cl] and [H+] both in chlorate-bisulfite and chlorate-sulfite/bisulfite solutions. A reaction mechanism was applied for simulation of the experimental observations. Rate constants k1 = (1±0.5)·10−4 M−1 s−1 and k2 = (0.23±0.01) M−1 s−1 were determined for the following reactions:
((1))
((2))
Rate constant k1 was obtained directly from the experimental results of chloratesulfite/ bisulfite reactions, where reaction (1) is predominant. Rate constant k2 was obtained by computer fitting of [Cl] and [H+] to the experimental values both in chlorate-bisulfite and chlorate-sulfite/bisulfite reactions.  相似文献   

19.
The transformations of Au(OH) 4 ? in aqueous solutions (T = 20°C, I = 1) containing NH3 and NH 4 + (pH 8.1–8.5) were studied. The most pronounced changes in the system occur in the range 0 > log [NH 4 + ] > ?2.0 (c Au = (1?10) × 10?4 mol/L, the monitoring time was about two weeks). When log [NH 4 + ] > 0, Au(NH3) 4 3+ dominates together with the amido form Au(NH3)3NH 2 2+ ; when log [NH 4 + ] < ?2.0, no changes in the spectra are observed, probably, because of the very low rate of the processes. As c Au increases in the indicated range, the polymerization rate grows. The equilibrium constant for Au(NH3)3OH2+ + NH3 = Au(NH3) 4 3+ + OH is log $ K_{4 OH, NH_3 } The transformations of Au(OH)4 in aqueous solutions (T = 20°C, I = 1) containing NH3 and NH4+ (pH 8.1–8.5) were studied. The most pronounced changes in the system occur in the range 0 > log [NH4+] > −2.0 (c Au = (1−10) × 10−4 mol/L, the monitoring time was about two weeks). When log [NH4+] > 0, Au(NH3)43+ dominates together with the amido form Au(NH3)3NH22+; when log [NH4+] < −2.0, no changes in the spectra are observed, probably, because of the very low rate of the processes. As c Au increases in the indicated range, the polymerization rate grows. The equilibrium constant for Au(NH3)3OH2+ + NH3 = Au(NH3)43+ + OH is log = −4.2 ± 0.3. This constant was used together with other constants, taking into account possible ligand effects, to estimate the formation constant of Au(NH3)43+: logβ4 = 47 ± 1, E 3/0 = 0.64 ± 0.02 V, log = −8.5 ± 1 (substitution of 4 NH3 for 4 OH in Au(OH)4), log = 17.5 ± 1 (substitution of 4NH3 for 4Cl in AuCl4). Original Russian Text ? I.V. Mironov, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 4, pp. 711–715.  相似文献   

20.
Relative enthalpies for low-and high-temperature modifications of Na3FeF6 and for the Na3FeF6 melt have been measured by drop calorimetry in the temperature range 723–1318 K. Enthalpy of modification transition at 920 K, δtrans H(Na3FeF6, 920 K) = (19 ± 3) kJ mol−1 and enthalpy of fusion at the temperature of fusion 1255 K, δfusH(Na3FeF6, 1255 K) = (89 ± 3) kJ mol−1 have been determined from the experimental data. Following heat capacities were obtained for the crystalline phases and for the melt, respectively: C p(Na3FeF6, cr, α) = (294 ± 14) J (mol K)−1, for 723 = T/K ≤ 920, C p(Na3FeF6, cr, β) = (300 ± 11) J (mol K)−1 for 920 ≤ T/K = 1233 and C p(Na3FeF6, melt) = (275 ± 22) J (mol K)−1 for 1258 ≤ T/K ≤ 1318. The obtained enthalpies indicate that melting of Na3FeF6 proceeds through a continuous series of temperature dependent equilibrium states, likely associated with the production of a solid solution.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号