首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetL be a lattice and letU be ano-symmetric convex body inR n . The Minkowski functional ∥ ∥ U ofU, the polar bodyU 0, the dual latticeL *, the covering radius μ(L, U), and the successive minima λ i (L,U)i=1,...,n, are defined in the usual way. Let ℒ n be the family of all lattices inR n . Given a pairU,V of convex bodies, we define and kh(U, V) is defined as the smallest positive numbers for which, given arbitraryL∈ℒ n anduR n /(L+U), somevL * with ∥v V sd(uv, ℤ) can be found. Upper bounds for jh(U, U 0), j=k, l, m, belong to the so-called transference theorems in the geometry of numbers. The technique of Gaussian-like measures on lattices, developed in an earlier paper [4] for euclidean balls, is applied to obtain upper bounds for jh(U, V) in the case whenU, V aren-dimensional ellipsoids, rectangular parallelepipeds, or unit balls inl p n , 1≤p≤∞. The gaps between the upper bounds obtained and the known lower bounds are, roughly speaking, of order at most logn asn→∞. It is also proved that ifU is symmetric through each of the coordinate hyperplanes, then jh(U, U 0) are less thanCn logn for some numerical constantC.  相似文献   

2.
The subgroups E(m,R) ⊗ E(n,R) ≤ HG = GL(mn,R) are studied under the assumption that the ring R is commutative and m, n ≥ 3. The group GL m ⊗GL n is defined by equations, the normalizer of the group E(m,R) ⊗ E(n,R) is calculated, and with each intermediate subgroup H it is associated a uniquely determined lower level (A,B,C), where A,B,C are ideals in R such that mA,A 2BA and nA,A 2CA. The lower level specifies the largest elementary subgroup satisfying the condition E(m, n,R, A,B,C) ≤ H. The standard answer to this problem asserts that H is contained in the normalizer N G (E(m,n,R, A,B,C)). Bibliography: 46 titles.  相似文献   

3.
Let be a full rank time-frequency lattice in ℝ d ×ℝ d . In this note we first prove that any dual Gabor frame pair for a Λ-shift invariant subspace M can be dilated to a dual Gabor frame pair for the whole space L 2(ℝ d ) when the volume v(Λ) of the lattice Λ satisfies the condition v(Λ)≤1, and to a dual Gabor Riesz basis pair for a Λ-shift invariant subspace containing M when v(Λ)>1. This generalizes the dilation result in Gabardo and Han (J. Fourier Anal. Appl. 7:419–433, [2001]) to both higher dimensions and dual subspace Gabor frame pairs. Secondly, for any fixed positive integer N, we investigate the problem whether any Bessel–Gabor family G(g,Λ) can be completed to a tight Gabor (multi-)frame G(g,Λ)∪(∪ j=1 N G(g j ,Λ)) for L 2(ℝ d ). We show that this is true whenever v(Λ)≤N. In particular, when v(Λ)≤1, any Bessel–Gabor system is a subset of a tight Gabor frame G(g,Λ)∪G(h,Λ) for L 2(ℝ d ). Related results for affine systems are also discussed. Communicated by Chris Heil.  相似文献   

4.
Consider a setA of symmetricn×n matricesa=(a i,j) i,jn . Consider an independent sequence (g i) in of standard normal random variables, and letM=Esupa∈Ai,j⪯nai,jgigj|. Denote byN 2(A, α) (resp.N t(A, α)) the smallest number of balls of radiusα for thel 2 norm ofR n 2 (resp. the operator norm) needed to coverA. Then for a universal constantK we haveα(logN 2(A, α))1/4KM. This inequality is best possible. We also show that forδ≥0, there exists a constantK(δ) such thatα(logN tK(δ)M. Work partially supported by an N.S.F. grant.  相似文献   

5.
For a domainU on a certaink-dimensional minimal submanifold ofS n orH n, we introduce a “modified volume”M(U) ofU and obtain an optimal isoperimetric inequality forU k k ω k M (D) k-1 Vol(∂D) k , where ω k is the volume of the unit ball ofR k . Also, we prove that ifD is any domain on a minimal surface inS + n (orH n, respectively), thenD satisfies an isoperimetric inequality2π A≤L 2+A2 (2π A≤L2−A2 respectively). Moreover, we show that ifU is ak-dimensional minimal submanifold ofH n, then(k−1) Vol(U)≤Vol(∂U). Supported in part by KME and GARC  相似文献   

6.
If P and P are symplectic polydisks of radii R 1≤...≤R n and R 1 ≤...≤R n , respectively, then we prove that P symplectically embeds in P provided that C(n)R 1R 1 and C(n)R 1...R n R 1 ...R n . Up to a constant factor, these conditions are optimal.  相似文献   

7.
Let {S n } be a random walk on ℤ d and let R n be the number of different points among 0, S 1,…, S n −1. We prove here that if d≥ 2, then ψ(x) := lim n →∞(−:1/n) logP{R n nx} exists for x≥ 0 and establish some convexity and monotonicity properties of ψ(x). The one-dimensional case will be treated in a separate paper. We also prove a similar result for the Wiener sausage (with drift). Let B(t) be a d-dimensional Brownian motion with constant drift, and for a bounded set A⊂ℝ d let Λ t = Λ t (A) be the d-dimensional Lebesgue measure of the `sausage' ∪0≤ s t (B(s) + A). Then φ(x) := lim t→∞: (−1/t) log P{Λ t tx exists for x≥ 0 and has similar properties as ψ. Received: 20 April 2000 / Revised version: 1 September 2000 / Published online: 26 April 2001  相似文献   

8.
The paper deals with the structure of intermediate subgroups of the general linear group GL(n, k) of degree n over a field k of odd characteristic that contain a nonsplit maximal torus related to a radical extension of degree n of the ground field k. The structure of ideal nets over a ring that determine the structure of intermediate subgroups containinga transvection is given. Let K = k( n?{d} ) K = k\left( {\sqrt[n]{d}} \right) be a radical degree-n extension of a field k of odd characteristic, and let T =(d) be a nonsplit maximal torus, which is the image of the multiplicative group of the field K under the regular embedding in G =GL(n, k). In the paper, the structure of intermediate subgroups H, THG, that contain a transvection is studied. The elements of the matrices in the torus T = T (d) generate a subring R(d) in the field k.Let R be an intermediate subring, R(d) ⊆ Rk, dR. Let σR denote the net in which the ideal dR stands on the principal diagonal and above it and all entries of which beneath the principal diagonal are equal to R. Let σR denote the net in which all positions on the principal diagonal and beneath it are occupied by R and all entries above the principal diagonal are equal to dR. Let ER) be the subgroup generated by all transvections from the net group GR). In the paper it is proved that the product TER) is a group (and thus an intermediate subgroup). If the net σ associated with an intermediate subgroup H coincides with σR,then TER) ≤ HNR),where NR) is the normalizer of the elementary net group ER) in G. For the normalizer NR),the formula NR)= TGR) holds. In particular, this result enables one to describe the maximal intermediate subgroups. Bibliography: 13 titles.  相似文献   

9.
We compute the greatest solutions of systems of linear equations over a lattice (P, ≤). We also present some applications of the results obtained to lattice matrix theory. Let (P, ≤) be a pseudocomplemented lattice with and and let A = ‖a ij n×n , where a ij P for i, j = 1,..., n. Let A* = ‖a ij n×n and for i, j = 1,..., n, where a* is the pseudocomplement of aP in (P, ≤). A matrix A has a right inverse over (P, ≤) if and only if A · A* = E over (P, ≤). If A has a right inverse over (P, ≤), then A* is the greatest right inverse of A over (P, ≤). The matrix A has a right inverse over (P, ≤) if and only if A is a column orthogonal over (P, ≤). The matrix D = A · A* is the greatest diagonal such that A is a left divisor of D over (P, ≤). Invertible matrices over a distributive lattice (P, ≤) form the general linear group GL n (P, ≤) under multiplication. Let (P, ≤) be a finite distributive lattice and let k be the number of components of the covering graph Γ(join(P,≤) − , ≤), where join(P, ≤) is the set of join irreducible elements of (P, ≤). Then GL a (P, ≤) ≅ = S n k . We give some further results concerning inversion of matrices over a pseudocomplemented lattice. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 3, pp. 139–154, 2005.  相似文献   

10.
Summary Letf: (x, z)∈R n×Rn→f(x, z)∈[0, +∞] be measurable inx and convex inz. It is proved, by an example, that even iff verifies a condition as|z| p≤f(x, z)≤Λ(a(x)+|z|q) with 1<p<q,aL loc s (R n),s>1, the functional that isL 1(Ω)-lower semicontinuous onW 1,1(Ω), does not agree onW 1,1(Ω) with its relaxed functional in the topologyL 1(Ω) given by inf
Riassunto Siaf: (x, z)∈R n×Rn→f(x, z)∈[0, +∞] misurabile inx e convessa inz. Si mostra con un esempio che anche sef verifica una condizione del tipo|z| p≤f(x, z)≤Λ(a(x)+|z|q) con 1<p<q,aL loc s (R n),s>1, il funzionale , che èL 1(Ω)-semicontinuo inferiormente suW 1,1(Ω), non coincide suW 1,1(Ω) con il suo funzionale rilassato nella topologiaL 1(Ω) definito da inf
  相似文献   

11.
Let K be a field and S=K[x 1,…,x n ]. In 1982, Stanley defined what is now called the Stanley depth of an S-module M, denoted sdepth (M), and conjectured that depth (M)≤sdepth (M) for all finitely generated S-modules M. This conjecture remains open for most cases. However, Herzog, Vladoiu and Zheng recently proposed a method of attack in the case when M=I/J with JI being monomial S-ideals. Specifically, their method associates M with a partially ordered set. In this paper we take advantage of this association by using combinatorial tools to analyze squarefree Veronese ideals in S. In particular, if I n,d is the squarefree Veronese ideal generated by all squarefree monomials of degree d, we show that if 1≤dn<5d+4, then sdepth (I n,d )=⌊(nd)/(d+1)⌋+d, and if d≥1 and n≥5d+4, then d+3≤sdepth (I n,d )≤⌊(nd)/(d+1)⌋+d.  相似文献   

12.
In this paper, we obtain a characterization of the Paley-Wiener space with several variables, which is denoted byB π, p (R n ), 1≤p<∞, i.e., for 1<p<∞,B π, p (R n ) is isomorphic tol p (Z n ), and forp=1,B π, 1 (R n ) is isomorphic to the discrete Hardy space with several variables, which is denoted byH(Z n ). This project is supported by the National Natural Science Foundation of China (19671012) and Doctoral Programme Institution of Higher Education Foundation of Chinese Educational Committee and supported by Youth Foundation of Sichuan.  相似文献   

13.
LetR be an integral domain andI a non-zero ideal ofR. The canonical mapR→R/I is called atorsion-free cover ofR/I if everyR-homomorphism from a torsion-freeR-module intoR/I can be factored throughR. The main result of this paper is thatR→R/I is a torsion-free cover if and only ifR is complete in theR-topology andI is an ideal of injective dimension 1. In this caseI is contained in the Jacobson radical ofR. And if Λ is the endomorphism ring ofI, then Λ is a quasi-local domain. IfI is a flatR-module, thenQ→Q/Λ is a torsion-free cover, whereQ is the quotient field ofR. And thenQ/Λ is an indecomposable injectiveR (and Λ) module. Special results are obtained ifR is a Noetherian domain or a Prüfer domain.  相似文献   

14.
Consider independent and identically distributed random variables {X nk, 1 ≤ km, n ≤ 1} from the Pareto distribution. We select two order statistics from each row, X n(i)X n(j), for 1 ≤ i < j ≤ = m. Then we test to see whether or not Laws of Large Numbers with nonzero limits exist for weighted sums of the random variables R ij = X n(j)/X n(i).  相似文献   

15.
We define the asymmetry constants(E) of a Banach spaceE, and show examples of finite-dimensional spaces with “large” asymmetry constants. IfE isn-dimensional,λ(E)17its projection constant and π 1(I E ) the absolutely summing norm of the identity operatorI E , thenn≦λ(E1(I E )≤n(s(E))2. Similar equations linking thep-absolutely summing and the nuclear norms ofI E are established. We also obtain estimates on these norms, for example π2(I E )=√n. The contribution of this author is a part of a Ph.D. Thesis prepared at the Hebrew University of Jerusalem under the supervision of Professor J. Lindenstrauss whose guidance and valuable suggestions are gratefully acknowledged.  相似文献   

16.
The uniform boundedness of the Riesz means for the sublaplacian on the Heisenberg groupH n is considered. It is proved thatS R α are uniformly bounded onL p(Hn) for 1≤p≤2 provided α>α(p)=(2n+1)[(1/p)−(1/2)].  相似文献   

17.
Denote by 0 = λ 0 < λ 1 ≤ λ 2 ≤ . . . the infinite sequence given by the values of a positive definite irrational quadratic form in k variables at integer points. For l ≥ 2 and an (l −1)-dimensional interval I = I 2×. . .×I l we consider the l-level correlation function K(l)I(R){K^{(l)}_I(R)} which counts the number of tuples (i 1, . . . , i l ) such that li1,?,lilR2{\lambda_{i_1},\ldots,\lambda_{i_l}\leq R^2} and lij-li1 ? Ij{\lambda_{i_{j}}-\lambda_{i_{1}}\in I_j} for 2 ≤ j ≤ l. We study the asymptotic behavior of K(l)I(R){K^{(l)}_I(R)} as R tends to infinity. If k ≥ 4 we prove K(l)I(R) ~ cl(Q) vol(I)Rlk-2(l-1){K^{(l)}_I(R)\sim c_l(Q)\,{\rm vol}(I)R^{lk-2(l-1)}} for arbitrary l, where c l (Q) is an explicitly determined constant. This remains true for k = 3 under the restriction l ≤ 3.  相似文献   

18.
For natural numbers r,s,q,m,n with srq we determine all natural functions g: T *(J (r,s,q)(Y, R 1,1)0)*R for any fibered manifold Y with m-dimensional base and n-dimensional fibers. For natural numbers r,s,m,n with sr we determine all natural functions g: T *(J (r,s) (Y, R)0)*R for any Y as above.  相似文献   

19.
K. Bezdek and T. Odor proved the following statement in [1]: If a covering ofE 3 is a lattice packing of the convex compact bodyK with packing lattice Λ (K is a Λ-parallelotopes) then there exists such a 2-dimensional sublattice Λ′ of Λ which is covered by the set ∪(K+z∣z ∈ Λ′). (KL(Λ′) is a Λ′-parallelotopes). We prove that the statement is not true in the case of the dimensionsn=6, 7, 8. Supported by Hung. Nat. Found for Sci. Research (OTKA) grant no. 1615 (1991).  相似文献   

20.
Using elementary comparison geometry, we prove: Let (M, g) be a simply-connected complete Riemannian manifold of dimension ≥ 3. Suppose that the sectional curvature K satisfies −1 − s(r) ≤ K ≤ −1, where r denotes distance to a fixed point in M. If lim r → ∞ e2r s(r) = 0, then (M, g) has to be isometric to ℍ n . The same proof also yields that if K satisfies −s(r) ≤ K ≤ 0 where lim r → ∞ r 2 s(r) = 0, then (M, g) is isometric to ℝ n , a result due to Greene and Wu. Our second result is a local one: Let (M, g) be any Riemannian manifold. For a ∈ ℝ, if Ka on a geodesic ball B p (R) in M and K = a on ∂B p (R), then K = a on B p (R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号