首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coherence transfer between stretching vibration modes of C–H bonds in the ethanol is detected by time-resolved multiplex CARS technique and it occurs via “through-bond transfer” pathway. The time scale and velocity of coherence transfer are estimated at 90 fs and 1670 m/s. Moreover, coherence transfer process requires vibrational modes of acceptor and donor are different.  相似文献   

2.
A bulk step‐growth polymerization of multifunctional azides and alkynes through the copper (I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) reaction is described. The polymerization kinetics of two systems containing different diynes, bisphenol E diyne (BE‐diyne)/bisphenol A bisazide (BA‐bisazide) and tetraethylene glycol diyne (TeEG‐diyne)/BA‐bisazide, are evaluated by differential scanning calorimetry (DSC), shear rheology, and thermogravimetric analysis. The effects of catalyst concentration on reaction kinetics are investigated in detail, as are the thermal properties (glass transition and decomposition temperatures) of the formed polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4093–4102, 2010  相似文献   

3.
4.
A completely “green” synthetic approach has been developed for the reduction and stabilization of Pt nanoparticles followed by self-assembly into nanowires in an aqueous β-d-glucose solution. Hydrothermal treatment initiated the reduction of Pt(IV) ions dispersed in a pH 8.0 β-d-glucose solution. The Pt nanoparticles were stabilized with oxidized glucose molecules. The Pt nanoparticles continued growing into nanowires followed by transformation into cubic nanocrystals with a rough needle surface. Evidence from TEM and FT-IR spectra reveal that carboxylate groups, which are generated by the oxidation of β-d-glucose, strongly interact with and stabilize the surface of these Pt nanostructures.  相似文献   

5.
The electrooxidationof “reduced” CO2 intermediate adsorbed at polycrystalline Pt was studied for comparison in 0.5 M H2SO4, 0.05 M HClO4 and 1 M KOH. The voltammograms showed a current peak multicity in 0.05 M HClO4 and in 1 M KOH. Current transients in 0.05 M HClO4 showed a complex decay at Eo, between 0.6 and 0.8 V. In 1 M KOH these transients showed a minimum and a maximum which shift in the time scale with Ead.The kinetic interpretation of the results was attempted considering a Temkin isotherm at low positive potentials. Tafel slopes obtained from the dependence of Ep vs. log υ are close to RT/F at high positive potentials. This value accounts for a chemical reaction as rds. Anion Adsorption at the polycrystalline Pt electrode would change the surface energy for Pt(OH) electroformation and hence it should influence the electrooxidation processes indirectly.  相似文献   

6.
The kinetics of the “a” and “b” band emissions arising from the 1Σ ← 3Ou and 1Σ ← 3lu transitions of the diatomic mercury molecule at λmax ~ 4850 Å and 3350 Å, respectively, have been studied at low concentrations of mercury in the presence of N2, C2H6, C3H8, and N2O. Rate constant values have been obtained for the following reactions of the excimer molecule: Hg2(3lu) + N2 → Hg2(3Ou) + N2 and Hg2(3Ou) + RH → Hg2(1Σ) + RH, where RH = C2H6 or C3H8. From a consideration of the detailed kinetics of band emissions, it was also possible to derive rate constants for the quenching reactions of Hg(3P0) atoms. These values are in reasonable agreement with those obtained previously from monitoring atom concentrations directly by 4047 Å absorbiometry.  相似文献   

7.
Kinetic and spectrophotometric measurements made during the Fe3+ ion catalyzed decomposition of H2O2 have been analyzed using the computer simulation method. Improved values of the rate constants of the “complex scheme” and of the molar absorptivities ofthe intermediates were obtained: k3/KM = 4.94 M?1 min?1, k4 = 193 M?1 min?1, εI/KM = 52.3 M?2 cm?1, εII = 25.7 M?1 cm?1. The simulation revealed details of the reaction which were unavailable by other means and which explained several features of its kinetics. The total amount of O2 evolved in the reaction using [H2O2] ~ 10?2 M has been calculated and found to be nearly stoichiometric. O2 evolution experiments in this region cannot, thus, distinguish between the “complex mechanism” predicting nearly stoichiometric evolution of O2 and the “free radical mechanism” predicting exactly stoichiometricamounts of O2. There are discrepancies within the “free radical scheme” with regard to the correct values of the rate constants to fit the reactions of H2O2 both with Fe2+ and Fe3+ ions, as well as other reactions assumed to proceed via free radicals.  相似文献   

8.
9.
Transformation of “living” carbocationic polymerization of styrene and isobutene to controlled atom transfer radical polymerization (ATRP) is described and formation of the corresponding AB and ABA block copolymers with styrene (St), methyl methacrylate (MMA, methyl acrylate (MA) and isobornyl acrylate (IBA) was demonstrated. A similar approach was applied to the cationic ring opening polymerization of tetrahydrofuran leading to the AB and ABA block copolymers with St, MMA and MA using ATRP. Site transformation approach was also used for the ring opening metathesis polymerization of norbornene and polycondensation systems using polysulfone as an example. In both cases, AB and ABA block copolymers were efficiently formed with styrene and acrylates.  相似文献   

10.
An attempt was undertaken to furnish an entirely quantitative characteristics to the thermodynamic model of the chromatographic system presented in (2). The attempt proved to be successful and one managed to establish simultaneously a new method enabling direct determination of the hydrogen-bond enthalpy from the PC experimental results.  相似文献   

11.
12.
Permeation of atomic as well as molecular hydrogen through palladium membranes has been investigated experimentally in the temperature range from room temperature to 200 °C and at a higher incident flux of hydrogen atoms on palladium surface than in previous studies. The results demonstrate that phenomena of ‘superpermeability’ and ‘pumping’ of atomic gases through metal membranes are of a common nature. A theoretical model based on chemical thermodynamics and diffusion theory adequately describes the quantitative relationships observed in experiments. It was found that permeability of atomic hydrogen depends strongly on the magnitude of surface incident flux and membrane temperature.  相似文献   

13.
The properties of polymer alloys are strongly dependent on their phase morphologies. Usually, the phase dispersion and domain sizes are affected by the process and can be influenced and stabilized only “extrinsically” by dispersants and emulsifiers. But, there are some examples of alloys with phase morphologies which are “intrinsically” determined and thus independently of the processing conditions. This aspect of phase determining factors is discussed using four principally different examples of polymer alloys.  相似文献   

14.
Currently, kinetic data is either collected under steady‐state conditions in flow or by generating time‐series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time‐series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one‐at‐a‐time flow experiments, and thus allows for the rapid generation of kinetic data.  相似文献   

15.
The critical strain εc for crazing of polystyrene in each of a variety of organic liquids has been measured along with the degree of swelling of the polymer by the liquid and the attendant reduction in the glass transition temperature Tg of the polymer. The critical strain for the crazing in air and the Tg of each of a set of specimens molded from mixtures of o-dichlorobenzene and polystyrene have also been determined. Correlations of εc with Tg in the two cases are identical within experimental error for the first 40°C of Tg reduction; these results imply (1) that organic liquids do not exercise a significant surface energy role in solvent crazing and (2) that their only roles are associated with flow processes. Correlation of solvent crazing εc with solubility parameter of the crazing fluid is very poor for several reasons that are discussed.  相似文献   

16.
The hydrogen peroxide decomposition kinetics were investigated for both “free” iron catalyst [Fe(II) and Fe(III)] and complexed iron catalyst [Fe(II) and Fe(III)] complexed with DTPA, EDTA, EGTA, and NTA as ligands (L). A kinetic model for free iron catalyst was derived assuming the formation of a reversible complex (Fe–HO2), followed by an irreversible decomposition and using the pseudo‐steady‐state hypothesis (PSSH). This resulted in a first‐order rate at low H2O2 concentrations and a zero order rate at high H2O2 concentrations. The rate constants were determined using the method of initial rates of hydrogen peroxide decomposition. Complexed iron catalysts extend the region of significant activity to pH 2–10 vs. 2–4 for Fenton's reagent (free iron catalyst). A rate expression for Fe(III) complexes was derived using a mechanism similar to that of free iron, except that a L–Fe–HO2 complex was reversibly formed, and subsequently decayed irreversibly into products. The pH plays a major role in the decomposition rate and was incorporated into the rate law by considering the metal complex specie, that is, EDTA–Fe–H, EDTA–Fe–(H2O), EDTA–Fe–(OH), or EDTA–Fe–(OH)2, as a separate complex with its unique kinetic coefficients. A model was then developed to describe the decomposition of H2O2 from pH 2–10 (initial rates = 1 × 10−4 to 1 × 10−7 M/s). In the neutral pH range (pH 6–9), the complexed iron catalyzed reactions still exhibited significant rates of reaction. At low pH, the Fe(II) was mostly uncomplexed and in the free form. The rate constants for the Fe(III)–L complexes are strongly dependent on the stability constant, KML, for the Fe(III)–L complex. The rates of reaction were in descending order NTA > EGTA > EDTA > DTPA, which are consistent with the respective log KMLs for the Fe(III) complexes. Because the method of initial rates was used, the mechanism does not include the subsequent reactions, which may occur. For the complexed iron systems, the peroxide also attacks the chelating agent and by‐product‐complexing reactions occur. Accordingly, the model is valid only in the initial stages of reaction for the complexed system. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 24–35, 2000  相似文献   

17.
18.
19.
20.
The processes of adsorption and electrooxidation of glucose on a smooth platinum electrode have been investigated in a wide range of pH values. It is found that glucose adsorption are platinum is accompanied by dehydrogenation of adsorbed molecules. The θR vs. Er dependence represents a bell-shaped curve with unequal sides and with a maximum at Er = 0.2 V at 0 < pH < 12 or at Er = 0.4 when pH > 12. The kinetics of adsorption is described by the Roginsky-Zel'dovich equation, and the dependence of the steady-state coverage on the glucose bulk concentrations by the Temkin isotherm.It is shown that in the case of glucose adsorption on platinum Qdehyd.H > QH, i.e. when glucose is brought into contact with a platinum electrode, the catalytic decomposition of glucose molecules occurs in addition to the formation of strongly chemisorbed particles. The transient current at Er < 1.0 V is a current due to the ionization of hydrogen formed during adsorption with dehydrogenation of glucose and its catalytic decomposition. The glucose electrooxidation rate under steady-state conditions at Er < 0.7 V is determined by the interaction of the chemisorbed carbon-containing particle with OHads. The slow step of glucose electrooxidation in the potential range 1.0 < Er < 1.5 V is the interaction of glucose molecules from the solution bulk with the surface platinum oxide, the latter undergoing a quick electrochemical regeneration thereafter.The basic regularities and mechanism of glucose electrooxidation on platinum are shown to be analogous to those obtained earlier for such elementary organic fuels as formaldehyde and formic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号