首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
PVA改性PAMPS-PAM超高力学性能双网络水凝胶的制备   总被引:2,自引:0,他引:2  
田帅  单国荣  王露一 《高分子学报》2010,(10):1175-1179
采用紫外光引发聚合制备了聚乙烯醇(PVA)改性的聚(2-丙烯酰胺基-2-甲基丙磺酸)-聚丙烯酰胺(PAMPS-PAM)双网络(DN)水凝胶.测定并比较了PVA改性前后PAMPS-PAM双网络水凝胶的溶胀动力学;通过扫描电子显微镜(SEM)观察了单网络水凝胶的结构;测定PVA改性前后PAMPS-PAM双网络水凝胶的压缩及拉伸性能.结果表明,经PVA改性后的PAMPS-PAM双网络水凝胶有较高的溶胀比;0.82%PVA用量的PAMPS-PAM双网络水凝胶在90%压缩形变率下仍保持完整、最大拉伸应力达到0.5 MPa,大幅提高PAMPS-PAM双网络水凝胶的力学性能.  相似文献   

2.
以N-异丙基丙烯酰胺(NIPA)、N,N-亚甲基双丙烯酰胺(MBA)和聚乙二醇(PEG)为原料,以60Co-γ射线为放射源制备了快速响应聚N-异丙基丙烯酰胺(PNIPA)多孔水凝胶。用红外光谱分析了水凝胶的结构,并测定了水凝胶的溶胀动力学、退溶胀动力学和平衡溶胀率。结果表明,PEG分子仅在聚合交联过程中充当成孔剂,不参与反应,反应后可被除去;水凝胶具有明显的温度敏感性,成孔剂的添加提高了水凝胶的溶胀性能和LCST。选用阿司匹林为模型药物,对水凝胶的药物缓释性能进行了初步研究。  相似文献   

3.
以2-丙烯酰胺-2-甲基丙磺酸(AMPS)为有机原料,正硅酸乙酯(TEOS)为无机原料,过硫酸钾为引发剂,N,N'-亚甲基双丙烯酰胺为交联剂,通过原位-凝胶水溶液聚合法合成了一系列不同二氧化硅含量和不同聚离子浓度的聚(2-丙烯酰胺-2-甲基丙磺酸)/二氧化硅杂化电场敏感性水凝胶.通过扫描电子显微镜(SEM)表征凝胶的结构,研究水凝胶在去离子水以及氯化钠溶液中的溶胀和消溶胀行为.结果表明,系列凝胶的平衡溶胀度介于224.9至325.6之间,复合凝胶的溶胀速率随TEOS用量的增加而降低;除理想杂化凝胶外,随着聚离子浓度的升高,凝胶在氯化钠溶液中的消溶胀速率逐渐减小.对凝胶的电场敏感性研究表明,当聚离子浓度大于氯化钠溶液浓度时,凝胶进一步溶胀,反之则消溶胀,其中杂化凝胶的再溶胀性能减弱,而消溶胀行为变得更为明显.同时制得的理想杂化凝胶,较纯有机凝胶具有更为理想的力学性能,最大抗压缩强度可达23.4 MPa.  相似文献   

4.
以2-丙烯酰胺基-2-甲基丙磺酸和丙烯酰胺为原料,以PEG6000为成孔剂,采用水溶液法合成多孔性聚(2-丙烯酰胺基-2-甲基丙磺酸/丙烯酰胺)水凝胶,研究了凝胶的溶胀性和电场作用下的退溶胀性能.在凝胶制备过程中,PEG6000分子充当成孔剂,通过综合性能比较和红外光谱测试可知,所得凝胶具有多孔结构,这种孔洞结构有利于水分子的进出.结果显示,当引发剂为0.005 mol/L,交联剂为0.008 mol/L,摩尔比AMPS:PEG6000=100∶1,AMPS:AAm=2∶1时,可得综合性能较好的PAMA凝胶.  相似文献   

5.
大孔PAMPS/PVA半互穿网络型水凝胶的制备及其性能研究   总被引:1,自引:0,他引:1  
袁丛辉  林松柏  柯爱茹  刘博  全志龙 《化学学报》2009,67(16):1929-1935
以PEG6000为成孔剂, 合成了大孔聚(2-丙烯酰胺-2-甲基丙磺酸)/聚乙烯醇半互穿网络型(s-IPN)水凝胶. 红外分析表明, PVA与PAMPS之间形成了较强的氢键, 使得PVA分子上的C—O伸缩振动吸收峰移向了低波数处. X射线衍射分析发现, 当PVA用量较高时, 由于部分的PVA结晶, 使得凝胶的半互穿网络结构不均匀. 电镜分析结果表明, 没有使用成孔剂的凝胶表面成褶皱形, 不存在任何孔洞结构; 而以PEG6000为成孔剂的凝胶表面存在相互贯穿的大孔结构. 研究了该水凝胶的溶胀性能, 结果表明, 该水凝胶的平衡溶胀度在116至320之间; 而成孔剂PEG6000的加入能较大幅度提高凝胶的溶胀速率, 凝胶在240 min之内就能达到溶胀平衡. 对凝胶抗压缩性能的研究表明, 当PVA用量为9.1% (w)时, 凝胶的抗压缩强度最大, 可达12.0 MPa; 而成孔剂的加入会在一定程度削弱凝胶的抗压缩强度. 该凝胶具有较好的电场敏感性, 研究发现, 将吸去离子水达到溶胀平衡的凝胶放入施加有电场的0.2 mol•L-1 NaCl溶液中时, 凝胶迅速偏向阳极. 而PVA和成孔剂PGE6000的用量均对凝胶的偏转速度以及最大偏转角存在较大的影响.  相似文献   

6.
以N,N-二甲基丙烯酰胺(DMAA)及甲基丙烯酸甲酯(MMA)为单体,Irgacure 2959为光引发剂,N,N′-二甲基双丙烯酰胺(Bis)为交联剂,利用紫外光引发自由基聚合制备了聚N,N′-二甲基丙烯酰胺(PDMAA)及P(DMAA-co-MMA)水凝胶,并通过加入少量表面改性后的纳米SiO2对该水凝胶进行改性,制得了P(DMAA-co-MMA)/纳米SiO2复合水凝胶,用FT-IR和SEM对产物进行了表征,同时研究该复合凝胶的溶胀动力学、消溶胀动力学、pH值响应性、离子强度等.该方法简便、快捷,大大缩短了聚合时间,合成过程仅需2-3 min.  相似文献   

7.
采用泡沫分散聚合法,以饱和Na2CO3水溶液为发泡剂,过硫酸铵(APS)及NaHSO3为引发剂,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,聚(氧化乙烯/氧化丙烯)(PF127)为泡沫稳定剂,丙烯酸(AA)和丙烯酰胺(AM)为单体,聚乙烯醇(PVA)为第二网络,制备超大孔半互穿水凝胶P(AA-co-AM)/PVA,并研究其对阳离子兰染料的吸附性能。研究表明,P(AA-co-AM)/PVA具有相互贯穿的超大孔结构;当n(AM):n(AA)=1.5:1,w(PVA)=1.6%时凝胶的平衡溶胀度达186.56g/g;凝胶具有很好的离子响应性,在蒸馏水中的平衡溶胀度为129.16g/g时,在0.1mol/L NaCl溶液中只有31.07g/g;对阳离子兰染料溶液的脱色率达92.17%,吸附容量达17.16mg/g。  相似文献   

8.
通过两步聚合得到既具有良好力学强度又具有优良导电性能的聚丙烯酰胺-g-聚苯胺复合水凝胶.首先,丙烯酰胺和N-(4-氨苯基)丙烯酰胺在钴源γ-射线辐照下共聚形成聚丙烯酰胺水凝胶;然后,苯胺在具有微观多孔结构的聚丙烯酰胺凝胶中吸附,在过硫酸铵的作用下与凝胶的苯胺侧基发生接枝聚合,得到聚丙烯酰胺-g-聚苯胺水凝胶,并形成聚苯胺连续导电通道.改变辐照时间和辐照剂量率,所获得的聚丙烯酰胺水凝胶的凝胶分数随着辐照剂量的增加逐渐增大,而溶胀率随着辐照剂量的增加呈先增后减的趋势,表明凝胶的交联程度随辐照剂量呈规律性变化;辐照交联聚合的单体浓度对凝胶的性能,如溶胀率、微观结构和机械性能等也有影响.酸掺杂后,聚丙烯酰胺-g-聚苯胺复合凝胶的电导率达到9 S/m.  相似文献   

9.
P(AMPS-co-BMA)水凝胶的电场敏感性及电刺激响应机理   总被引:3,自引:0,他引:3  
以离子型单体2-丙烯酰胺-2-甲基丙磺酸(AMPS)及非离子型单体甲基丙烯酸丁酯为原料, 偶氮二异丁腈为引发剂, N,N′-亚甲基双丙烯酰胺为交联剂, N,N-二甲基甲酰胺为溶剂, 通过自由基聚合合成了一系列聚离子浓度不同的聚(2-丙烯酰胺-2-甲基丙磺酸-co-甲基丙烯酸丁酯)电场敏感性水凝胶. 研究了其在去离子水及NaCl溶液中的溶胀行为. 结果表明, 该水凝胶在去离子水中的平衡溶胀度在236.4~298.5之间, 其溶胀速率随着AMPS用量的增加而增加; 并且随着凝胶内部聚离子浓度的增加, 凝胶在NaCl溶液中的消溶胀速率及消溶胀度逐渐减小. 凝胶的电刺激响应性能研究结果表明, 在电场存在下, 凝胶在NaCl溶液中的溶胀行为与凝胶内部聚离子浓度和溶液中NaCl浓度的相对大小有关, 当凝胶内部聚离子浓度大于溶液中NaCl浓度时, 凝胶溶胀, 反之则凝胶消溶胀; 而且, 凝胶在电场作用下的偏转行为同样与凝胶内部聚离子浓度和溶液中NaCl浓度的相对大小有关, 当凝胶内部聚离子浓度大于溶液中NaCl浓度时, 偏向阴极, 反之则凝胶偏向阳极. 另外, 在电场存在下, 凝胶在NaCl溶液中的电偏转速度与环境温度密切相关.  相似文献   

10.
以甲基丙烯酸(MAA)、N-异丙基丙烯酰胺(NIPAAm)、丙烯酰胺(AM)为原料,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,利用IPN技术并结合磁性的γ-Fe2O3增强剂,在水溶液中制备了半互穿网络水凝胶(PMAA/PAM-NIPAAm/γ-Fe2O3),研究了水凝胶的溶胀性﹑热稳定性和电磁性。实验表明,水凝胶形成稳定的IPN互穿网络结构且该水凝胶具温度、pH双重敏感性和顺电磁性。所合成的水凝胶在低临界溶解温度31℃以下,具有明显正向温敏性,高于此温度,水凝胶的温度敏感性会逐渐减弱。产品成功克服了NIPAAm类水凝胶的温缩性。  相似文献   

11.
Self‐healing hydrogel such as polyacrylic acid (PAA) hydrogel has attracted increasing attention based on its promising potential applications. However, it usually suffers from low strength especially as mechanical device. Herein, a commercial microcrystalline cellulose (MCC) was modified with acrylamide to graft polyacrylamide (PAM) chains on the particle surface. The acrylamide‐modified MCC (AM‐MCC) was then dispersed in monomer solution of acrylic acid to prepare composite hydrogel. The mechanical properties of the obtained composite hydrogels and the self‐healed hydrogels were carefully measured by compressive and tensile tests, and by dynamic mechanical analysis. Our results demonstrate that introduction of a small amount of AM‐MCC such as 3 wt% can not only reinforce the original hydrogel and the healed hydrogel markedly, but also improve self‐healing efficiency obviously. The analyses indicate that in addition to the reversible multi‐interactions such as hydrogen bonding and ionic interactions, the entanglements between the PAA chains of the hydrogel matrix and the PAM chains grafted on the MCC particles have also played an important role on the improvement in mechanical performances and the healing ability of the hydrogel. Moreover, the responsiveness to exterior ion has been tested to indicate potential application of the composite hydrogel as self‐healable sensor.  相似文献   

12.
Double network (DN) hydrogels as one kind of tough gels have attracted extensive attention for their potential applications in biomedical and load-bearing fields. Herein, we import more functions like shape memory into the conventional tough DN hydrogel system. We synthesize the PEG-PDAC/P(AAm-co-AAc) DN hydrogels, of which the first network is a well-defined PEG (polyethylene glycol) network loaded with PDAC (poly(acryloyloxyethyltrimethyl ammonium chloride)) strands, while the second network is formed by copolymerizing AAm (acrylamide) with AAc (acrylic acid) and cross-linker MBAA (N, N'-methylenebisacrylamide). The PEG-PDAC/P(AAm-co-AAc) DN gels exhibits high mechanical strength. The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m3, respectively. Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network, the PEG-PDAC/P(AAm-coAAc) DN hydrogels use P(AAm-co-AAc), a weak polyelectrolyte, as the second network. The AAc units serve as the coordination points with Fe3+ ions and physically crosslink the second network, which realizes the shape memory property activated by the reducing ability of ascorbic acid. Our results indicate that the high mechanical strength and shape memory properties, probably the two most important characters related to the potential application of the hydrogels, can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.  相似文献   

13.
We here describe new double network (DN) hydrogels with excellent mechanical strength and high sensitivity to pH changes. The first polymer network has a bottle brush structure and is formed from oligo‐monomers of poly(ethylene glycol) methyl ether methacrylate (PEGMA). Poly(acrylic acid) (PAA) is used as the second network. This double network features strong intermolecular interactions between the neutral poly(ethylene glycol) (PEG) side chains of PPEGMA and the non‐ionized carboxylic acid groups of the PAA second network. When immersed in solutions with a pH below ~4 the DN hydrogels have a low swelling ratio and are opaque as a result of solvent‐polymer phase separation driven by the formation of dense hydrogen‐bonded clusters. The compression strength (~8 MPa) is at least 14 times higher than the analogous single networks. When immersed in solutions with a pH >4, the hydrogels are transparent and exhibit a high swelling ratio with a compression strength of ~1 MPa. The PEG side chain length can be readily controlled without greatly altering the overall DN topology by choosing PEGMA monomers having different PEG side chain lengths. Longer PEG side branches give higher compression and tensile strengths at pH <4 when hydrogen bonded clusters form. The robust nature of these DN gels over a wide pH range may be useful for applications such as artificial muscles and controlled release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
A simple two-step method was introduced to improve the hydrogel mechanical strength by forming an interpenetrating network (IPN). For this purpose, we synthesized polyacrylate/polyacrylate (PAC/PAC), polyacrylate/polyacrylamide (PAC/PAM), polyacrylamide/polyacrylamide (PAM/PAM) and polyacrylamide/poly(vinyl alcohol) (PAM/PVA) IPN hydrogels. The PAC/PAC IPN and PAC/PAM IPN hydrogels showed compressive strength of 70 and 160 kPa, respectively. For the PAM/PAM IPN and PAM/PVA IPN hydrogels, they exhibited excellent tensile strength of 1.2 and 2.8 MPa, and elongations at break of 1750% and 3300%, respectively. A strain relaxation was also observed in the case of PAM series IPN hydrogels. From FTIR, TGA and SEM measurements, we confirmed that physical entanglement, hydrogen bonds and chemical crosslinking played major roles in improving hydrogel strength and toughening. The two-step technique contributes to the understanding of ideal networks, provides a universal strategy for designing high mechanical strength hydrogels, and opening up the biomedical application of hydrogels.  相似文献   

15.
A continuum damage model was developed to describe the finite tensile deformation of tough double-network (DN) hydrogels synthesized by polymerization of a water-soluble monomer inside a highly crosslinked rigid polyelectrolyte network. Damage evolution in DN hydrogels was characterized by performing loading-unloading tensile tests and oscillatory shear rheometry on DN hydrogels synthesized from 3-sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). The model can explain all the mechanical features of finite tensile deformation of DN hydrogels, including idealized Mullins effect and permanent set observed after unloading, qualitatively and quantitatively. The constitutive equation can describe the finite elasto-plastic tensile behavior of DN hydrogels without resorting to a yield function. It was showed that tensile mechanics of DN hydrogels in the model is controlled by two material parameters which are related to the elastic moduli of first and second networks. In effect, the ratio of these two parameters is a dimensionless number that controls the behavior of material. The model can capture the stable branch of material response during neck propagation where engineering stress becomes constant. Consistent with experimental data, by increasing the elastic modulus of the second network the finite tensile behavior of the DN hydrogel changes from necking to strain hardening.  相似文献   

16.
Here we report the preparation and characterization of nanostructured thermo-responsive poly(acrylamide) (PAM)-based hydrogels. The addition of slightly crosslinked poly(N-isopropylacrylamide) (PNIPA) nanogels to AM reactive aqueous solution produces nanostructured hydrogels that exhibit a volume phase transition temperature (TVPT). Their swelling kinetics, TVPT's and mechanical properties at the equilibrium-swollen state (Heq) are investigated as a function of the concentration of PNIPA nanogels in the nanostructured hydrogels. Nanostructured hydrogels with PNIPA nanogels/AM mass ratios of 20/80 and above exhibit higher Heq and longer time to reach the equilibrium swelling than those of the conventional PAM hydrogels. However, the PNIPA nanogels possess thermo-responsive character missing in conventional PAM hydrogels. The TVPT of nanostructured hydrogels depends on PNIPA nanogel content but their elastic and Young moduli are larger than those of conventional hydrogels at similar swelling ratios. Swelling kinetics, TVPT, and mechanical properties are explained in terms of the controlled in-homogeneities introduced by the PNIPA nanogels during the polymerization.  相似文献   

17.
Cellulose-derived materials are usually characterized by sophisticated structures, leading to unique and multiple functions, which have been a source of inspiration for the fabrication of a wide variety of nanocomposites. Cellulose nanocrystals/poly(acrylamide) (CNCs/PAM) nanocomposite hydrogels were synthesized via in situ polymerization in the CNC suspension. The cellulose from pulp fiber under different sulfuric acid hydrolysis conditions, examined by conductometric titration and transmission electron microscopy, was applied to study how the effects of the surface charge and aspect ratio affect CNCs’ mechanical reinforcement in nanocomposites. The results indicated that the higher surface charge concentration resulted in better dispersibility in aqueous suspension, leading to a more efficient energy dissipation process. The CNC reinforcement behavior followed the percolation model where the greater aspect ratio of CNC contributed to higher mechanical properties. The preferential adsorption of poly(ethylene glycol) (PEG) on the CNC surface was characterized by zeta potential measurements where the fracture strength and fracture elongation of nanocomposites decreased with increasing PEG concentration. The adsorption of PEG on the CNC surface occupied the active sites for polymer chain propagation, which hindered the PAM cross-linking effect on the CNC surface and decreased the cross-linking density of the network.  相似文献   

18.
Macroporous poly(acrylamide) hydrogels have been synthesized by using poly(ethylene glycol) (PEG) with three different molecular weights as the pore‐forming agent. Scanning electron microscope graphs reveal that the macroporous network structure of the hydrogels can be adjusted by applying different molecular weights of PEG during the polymerization reaction. The swelling ratios of the PEG‐modified hydrogels were much higher than those for the same type of hydrogel prepared via conventional method. However, the swelling/deswelling ratios of the PEG‐modified hydrogels were affected slightly by the change in the amount of the PEG. Scanning electron microscopy experiments, together with swelling ratio studies, reveal that the PEG‐modified hydrogels are characterized by an open structure with more pores and higher swelling ratio, but lower mechanical strength, compared the conventional hydrogel. PAAm has potential applications in controlled release of macromolecular active agents.  相似文献   

19.
Poly(acrylamide-co-octylphenol polyoxyethylene (10) acrylate) hydrophobic association hydrogels, which is abbreviated to poly(AM-co-OP10/AC) HA-gels, were prepared through micellar copolymerization of acrylamide (AM) and a small amount of octylphenol polyoxyethylene (10) acrylate (OP10/AC) in the presence or absence of sodium dodecyl sulfate (SDS). For poly(AM-co-OP10/AC) HA-gels, formation mechanism was discussed in detail, which can reasonably explain the reason that tensile mechanical properties of the hydrogels (containing SDS) are much higher than those of the hydrogels (not containing SDS). In addition, according to the tensile experimental results of poly(AM-co-OP10/AC) HA-gels, the effect of composition content in the initial solutions on tensile mechanical properties was investigated in detail. The results clearly indicate tensile strength, elastic modulus and elongations for poly(AM-co-OP10/AC) HA-gels strongly depended on composition content in the initial solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号