首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
提出了一种新型的径向三腔同轴虚阴极振荡器,并对其进行了理论分析和数值模拟。这种虚阴极振荡器采用径向三腔结构,通过改变束-波互作用区的电场分布来提高电子束与TM01模式的耦合效率,并通过采用准谐振腔的结构来进一步抑制模式竞争以获得较高的输出微波增益。同时采用能量同轴提取的方式进一步提高器件的功率和效率。粒子模拟结果表明,在二极管电压400 kV,束流50 kA的条件下,径向三腔同轴虚阴极振荡器在4.14 GHz处获得了平均功率约2.45 GW的微波输出,功率转换效率达到12%。输出微波模式纯度较高,频谱非常窄。  相似文献   

2.
 提出了一种新型的径向三腔同轴虚阴极振荡器,并对其进行了理论分析和数值模拟。这种虚阴极振荡器采用径向三腔结构,通过改变束-波互作用区的电场分布来提高电子束与TM01模式的耦合效率,并通过采用准谐振腔的结构来进一步抑制模式竞争以获得较高的输出微波增益。同时采用能量同轴提取的方式进一步提高器件的功率和效率。粒子模拟结果表明,在二极管电压400 kV,束流50 kA的条件下,径向三腔同轴虚阴极振荡器在4.14 GHz处获得了平均功率约2.45 GW的微波输出,功率转换效率达到12%。输出微波模式纯度较高,频谱非常窄。  相似文献   

3.
介绍了中国工程物理研究院应用电子学研究所关于同轴虚阴极振荡器实验的最新进展。实验结果表明,带阳极反射板结构的同轴虚阴极振荡器比不带阳极反射板结构的同轴虚阴极振荡器输出微波功率更高,频谱更纯。在二极管电压350 kV,电流23 kA条件下,输出微波峰值功率500 MW,能量转换效率约6.2%,工作频率为3.3 GHz。对实验结果进行了理论分析。  相似文献   

4.
同轴虚阴极振荡器实验研究   总被引:1,自引:5,他引:1       下载免费PDF全文
 介绍了中国工程物理研究院应用电子学研究所关于同轴虚阴极振荡器实验的最新进展。实验结果表明,带阳极反射板结构的同轴虚阴极振荡器比不带阳极反射板结构的同轴虚阴极振荡器输出微波功率更高,频谱更纯。在二极管电压350 kV,电流23 kA条件下,输出微波峰值功率500 MW,能量转换效率约6.2%,工作频率为3.3 GHz。对实验结果进行了理论分析。  相似文献   

5.
提出一种高效率预调制型同轴虚阴极振荡器,进行了数值模拟研究。研究表明:径向束流预调制型同轴虚阴极振荡器利用在束-波互作用区加载金属圆环形成谐振腔,改变束-波互作用区的电场,对电子束进行调制。圆筒形金属形成的调制腔产生的电场既对电子束进行了调制,同时对微波频率进行了锁定,其谐振频率主要是由加载的金属圆筒的长度和两个圆筒之间的径向距离决定。经过优化设计,在600 kV,73 kA无外加引导磁场的条件下,预调制型同轴虚阴极振荡器获得了平均功率6 GW,频率为2.575 GHz的微波输出,效率达到13.94%。  相似文献   

6.
提出一种高效率预调制型同轴虚阴极振荡器,进行了数值模拟研究。研究表明:径向束流预调制型同轴虚阴极振荡器利用在束-波互作用区加载金属圆环形成谐振腔,改变束-波互作用区的电场,对电子束进行调制。圆筒形金属形成的调制腔产生的电场既对电子束进行了调制,同时对微波频率进行了锁定,其谐振频率主要是由加载的金属圆筒的长度和两个圆筒之间的径向距离决定。经过优化设计,在600 kV,73 kA无外加引导磁场的条件下,预调制型同轴虚阴极振荡器获得了平均功率6 GW,频率为2.575 GHz的微波输出,效率达到13.94%。  相似文献   

7.
 提出了一种具有预调制腔、主谐振腔和提取腔组成的多腔轴向提取虚阴极振荡器结构。腔体特性分析表明其在工作频段可以获得更高的提取效率。粒子模拟显示该结构在电压700 kV,电流23 kA的条件下,可输出功率大于1.7 GW,频率4.0 GHz,功率效率大于10%的微波。初步的实验研究获得了辐射功率约700 MW,频率约4.1 GHz的微波输出。对实验结果的进一步分析表明,通过适当加大器件虚阴极振荡工作区微波管直径的方法可以有效改善器件的谐振性能,从而获得更好的工作性能。  相似文献   

8.
提出了一种具有预调制腔、主谐振腔和提取腔组成的多腔轴向提取虚阴极振荡器结构。腔体特性分析表明其在工作频段可以获得更高的提取效率。粒子模拟显示该结构在电压700 kV,电流23 kA的条件下,可输出功率大于1.7 GW,频率4.0 GHz,功率效率大于10%的微波。初步的实验研究获得了辐射功率约700 MW,频率约4.1 GHz的微波输出。对实验结果的进一步分析表明,通过适当加大器件虚阴极振荡工作区微波管直径的方法可以有效改善器件的谐振性能,从而获得更好的工作性能。  相似文献   

9.
针对向内发射同轴虚阴极振荡器进行了1维理论分析,给出了电流电压关系的数值解,估算了同轴漂移区空间电荷限制流及虚阴极位置;同时使用MAFIA程序进行了全3维PIC数值模拟研究,通过调节阴极电子发射区与阳极反射板之间距离进行了一系列计算,得到了圆波导中各传输模式频谱及功率。结果表明,尽管使用圆周对称的同轴结构,输出模式中TE11和TM01仍占主导地位,两种模式共同存在,相互竞争。在最佳情况下,当二极管电压为250 kV,电流为20 kA时,得到了微波输出总功率最高为740 MW,功率效率超过10%,主频为3.18 GHz,同时含有较强TE11和TM01模式成分的微波输出。  相似文献   

10.
向内发射同轴虚阴极振荡器理论分析与数值模拟   总被引:3,自引:3,他引:0       下载免费PDF全文
 针对向内发射同轴虚阴极振荡器进行了1维理论分析,给出了电流电压关系的数值解,估算了同轴漂移区空间电荷限制流及虚阴极位置;同时使用MAFIA程序进行了全3维PIC数值模拟研究,通过调节阴极电子发射区与阳极反射板之间距离进行了一系列计算,得到了圆波导中各传输模式频谱及功率。结果表明,尽管使用圆周对称的同轴结构,输出模式中TE11和TM01仍占主导地位,两种模式共同存在,相互竞争。在最佳情况下,当二极管电压为250 kV,电流为20 kA时,得到了微波输出总功率最高为740 MW,功率效率超过10%,主频为3.18 GHz,同时含有较强TE11和TM01模式成分的微波输出。  相似文献   

11.
当传统高功率微波器件向高频段拓展时,器件尺寸的缩小将造成空间极限电流及功率容量的减小。基于此提出一种Ku波段同轴结构的渡越辐射振荡器。通过引入同轴结构,器件内部的空间极限电流及功率容量得到了有效提升。调制腔采用三谐振腔结构,与两腔结构相比,调制电子束的能力明显增强。采用高频场软件对调制腔和输出腔进行了冷腔分析。利用2.5维粒子模拟软件对Ku波段同轴渡越辐射振荡器进行了数值模拟,在导引磁场0.6 T、二极管电压392 kV、电流15.2 kA的条件下,在中心频率为14.184 GHz处获得1.2 GW的高功率微波输出,功率转换效率达20%。  相似文献   

12.
当传统高功率微波器件向高频段拓展时,器件尺寸的缩小将造成空间极限电流及功率容量的减小。基于此提出一种Ku波段同轴结构的渡越辐射振荡器。通过引入同轴结构,器件内部的空间极限电流及功率容量得到了有效提升。调制腔采用三谐振腔结构,与两腔结构相比,调制电子束的能力明显增强。采用高频场软件对调制腔和输出腔进行了冷腔分析。利用2.5维粒子模拟软件对Ku波段同轴渡越辐射振荡器进行了数值模拟,在导引磁场0.6 T、二极管电压392 kV、电流15.2 kA的条件下,在中心频率为14.184 GHz处获得1.2 GW的高功率微波输出,功率转换效率达20%。  相似文献   

13.
在3维Yee网格和蛙跳模型上建立了一种合理的描述阳极栅网中电子散射过程的物理模型,在经典碰撞理论基础上推导了散射角和动量公式,并运用蒙特卡罗法模拟了高斯分布电子束在径向虚阴极情景下的阳极栅网散射过程。模拟结果出现了明显的虚阴极现象,平均功率0.60 GW,虚阴极效率4.5%,微波主频4.7 GHz,主模是TM01模。这些参数与文献模拟的数据基本符合,证明了虚阴极中阳极栅网数值模拟实现的正确性。  相似文献   

14.
提出一种新型的低阻抗同轴慢波器件,它利用阳极金属网将二极管区与波束互作用区分开,并在波束互作用区采用内外双盘荷波导慢波结构以提高波束互作用效率。利用全电磁粒子模拟软件进行优化设计,结果表明:在输入电功率100 GW、电流95.4 kA的条件下,同轴慢波器件可在L波段获得23 GW的平均输出功率,功率转换效率达到23%。该器件无需外加磁场,结构简单,小型轻便。同时还对阳极金属网的温升状况进行了简单的估算。  相似文献   

15.
提出了一种新型的中等能量P波段相对论返波振荡器,该器件将慢波结构由低波段普遍采用的同轴外波纹结构变为同轴双波纹结构,使得径向束-波作用空间扩大了2倍,一定程度上增加了器件的功率容量;另外同轴双波纹结构还较大提高了器件的时间增长率,从而有效地减小了微波输出饱和时间.经优化设计,该结构在二极管电压300 kV、电流3 kA...  相似文献   

16.
提出一种新型的低阻抗同轴慢波器件,它利用阳极金属网将二极管区与波束互作用区分开,并在波束互作用区采用内外双盘荷波导慢波结构以提高波束互作用效率。利用全电磁粒子模拟软件进行优化设计,结果表明:在输入电功率100 GW、电流95.4 kA的条件下,同轴慢波器件可在L波段获得23 GW的平均输出功率,功率转换效率达到23%。该器件无需外加磁场,结构简单,小型轻便。同时还对阳极金属网的温升状况进行了简单的估算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号