首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The main physiological function of the capillary blood vessels consists in sustaining the exchange processes between blood and tissues. The transport of water and substances dissolved in it occurs by filtration through the capillary walls. The filtered liquid flows through the tissues (cells and other structures) in the zone of influence of the capillary (“tissue cylinder”) and later almost all of it returns into the capillary; only a small part of the liquid drains into the lymphatic capillaries. Insufficiency of such drainage leads to edema, i.e., filling of water into the tissues. The walls of the capillaries are almost opaque for large albuminous molecules. Therefore the motion of the liquid through the walls is determined not only by the pressure drop, but also by osmosis effects. In the tissue the motion of the liquid is similar to filtration through a porous medium and in some cases it is accompanied by reverse attachment of water, its absorption by tissues, and other phase reversal-type phenomena. The theoretical investigation of transcapillary transport of liquid is of interest for solving a number of physiological problems, in particular, for understanding the mechanisms of regulating exchanges in the tissues. Below, a quasi-one-dimensional model is proposed which describes the hydrodynamics of transcapillary filtration. The basic equations are formulated in Sec. 1 and the subsequent sections contain a discussion of the model including its comparison with the results of other authors (Sec. 3).  相似文献   

2.
We study the stability of flow in a heated capillary tube with an evaporating meniscus. The behavior of the vapor/liquid system, which undergoes small perturbations, is analyzed by linear approximation, in the frame of a one-dimensional model of capillary flow, with a distinct interface. The effect of the physical properties of both phases, the wall heat flux and the capillary sizes, on the flow stability is studied. The velocity, pressure and temperature oscillations in a capillary tube with a constant wall heat flux or a constant wall temperature are determined. A scenario of a possible process at small and moderate Peclet numbers corresponding to the flow in capillaries is considered. The boundaries of stability, subdividing the domains of stable and unstable flows, are outlined, and the values of geometrical and operating parameters corresponding to the transition from stable to unstable flow are estimated. It is shown that the stable capillary flow occurs at relatively small wall heat fluxes, whereas at high ones, the flow is unstable, with continuously growing velocity, pressure and temperature oscillations.  相似文献   

3.
A new theoretical model of joint filtration flow of immiscible incompressible fluids is presented. This model takes into account relaxation processes due to the exchange of the fluids between pores of different sizes, and these relaxation processes are driven by capillary forces. The fluids occupy connected regions in the four-dimensional space formed by three coordinates and the pore length scale. When fluid exchange between pores of given sizes is effected by way of successive flow through pores of all intermediate sizes, the fluid pressure within each region is governed by a hyperbolic equation, the role of time being played by the pore linear scale. Pressure jumps across hypersurfaces separating these regions are equal to corresponding values of capillary pressure. A supplementary condition at any such hypersurface requires the speed of its displacement in the four-dimensional space to coincide with the normal velocity components of both the adjoining fluids. As a result, a new formulation of multiphase filtration flow problems is gained with allowance made for capillary relaxation in the porous space.  相似文献   

4.
V. A. Demin 《Fluid Dynamics》2008,43(4):524-532
The free oscillations of a capillary bridge whose equilibrium shape is determined by the surface tension forces and the static gravity field are investigated. The values of 25 “lower” levels of the spectrum of natural oscillations of the capillary bridge are found for various control parameters in accordance with the experimental conditions.  相似文献   

5.
We show how to predict flow properties for a variety of rocks using pore-scale modeling with geologically realistic networks. The pore space is represented by a topologically disordered lattice of pores connected by throats that have angular cross-sections. We successfully predict single-phase non-Newtonian rheology, and two and three-phase relative permeability for water-wet media. The pore size distribution of the network can be tuned to match capillary pressure data when a network representation of the system of interest is unavailable. The aim of this work is not simply to match experiments, but to use easily acquired data to estimate difficult to measure properties and to predict trends in data for different rock types or displacement sequences.  相似文献   

6.
Ngo Zui Kan 《Fluid Dynamics》1980,15(3):425-429
A numerical calculation is made of small oscillations of a viscous incompressible fluid that fills half of a horizontal cylindrical channel. The calculation is made with and without allowance for surface tension. The results of the calculation show that allowance for surface tension increases the damping of the oscillations. The general properties of problems of the normal oscillations of a heavy and capillary viscous incompressible fluid were studied in [1–3], in which the possibility of applying the Bubnov-Galerkin method to these problems was pointed out. A method for calculating the oscillations of a viscous incompressible fluid that partly fills an arbitrary vessel at large Reynolds numbers was developed in [3–5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 128–132, May–June, 1980.  相似文献   

7.
Man  H. N.  Jing  X. D. 《Transport in Porous Media》2000,41(3):263-285
In order to model petrophysical properties of hydrocarbon reservoir rocks, the underlying physics occurring in realistic rock pore structures must be captured. Experimental evidence showing variations of wetting occurring within a pore, and existence of the so-called 'non-Archie' behaviour, has led to numerical models using pore shapes with crevices (for example, square, elliptic, star-like shapes, etc.). This paper presents theoretical derivations and simulation results of a new pore space network model for the prediction of petrophysical properties of reservoir rocks. The effects of key pore geometrical factors such as pore shape, pore size distribution and pore co-ordination number (pore connectivity) have been incorporated into the theoretical model. In particular, the model is used to investigate the effects of wettability and saturation history on electrical resistivity and capillary pressure characteristics. The petrophysical characteristics were simulated for reservoir rock samples. The use of the more realistic grain boundary pore (GBP) shape allows simulation of the generic behaviour of sandstone rocks, with various wetting scenarios. The predictions are in close agreement with electrical resistivity and capillary pressure characteristics observed in experiments.  相似文献   

8.
Saturation overshoot and pressure overshoot are studied by incorporating dynamic capillary pressure, capillary pressure hysteresis and hysteretic dynamic coefficient with a traditional fractional flow equation in one-dimensional space. Using the method of lines, the discretizations are constructed by applying the Castillo–Grone’s mimetic operators in the space direction and a semi-implicit integrator in the time direction. Convergence tests and conservation properties of the schemes are presented. Computed profiles capture both the saturation overshoot and pressure overshoot phenomena. Comparisons between numerical results and experiments illustrate the effectiveness and different features of the models.  相似文献   

9.
Pore network analysis is used to investigate the effects of microscopic parameters of the pore structure such as pore geometry, pore-size distribution, pore space topology and fractal roughness porosity on resistivity index curves of strongly water-wet porous media. The pore structure is represented by a three-dimensional network of lamellar capillary tubes with fractal roughness features along their pore-walls. Oil-water drainage (conventional porous plate method) is simulated with a bond percolation-and-fractal roughness model without trapping of wetting fluid. The resistivity index, saturation exponent and capillary pressure are expressed as approximate functions of the pore network parameters by adopting some simplifying assumptions and using effective medium approximation, universal scaling laws of percolation theory and fractal geometry. Some new phenomenological models of resistivity index curves of porous media are derived. Finally, the eventual changes of resistivity index caused by the permanent entrapment of wetting fluid in the pore network are also studied.Resistivity index and saturation exponent are decreasing functions of the degree of correlation between pore volume and pore size as well as the width of the pore size distribution, whereas they are independent on the mean pore size. At low water saturations, the saturation exponent decreases or increases for pore systems of low or high fractal roughness porosity respectively, and obtains finite values only when the wetting fluid is not trapped in the pore network. The dependence of saturation exponent on water saturation weakens for strong correlation between pore volume and pore size, high network connectivity, medium pore-wall roughness porosity and medium width of the pore size distribution. The resistivity index can be described succesfully by generalized 3-parameter power functions of water saturation where the parameter values are related closely with the geometrical, topological and fractal properties of the pore structure.  相似文献   

10.
A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is based on the concept of examining the porous space at different levels of magnification. The conservation of the water vapour permeability of dry material is used as scaling criterion to link the different pore scales. A macroscopic permeability is deduced from the permeabilities calculated at the different levels of magnification. Each level of magnification is modelled using an isotropic nonplanar 2D cross-squared network. The multiscale network simulates the enhancement of water vapour permeability due to capillary condensation, the hysteresis phenomenon between wetting and drying, and the steep increase of moisture permeability at the critical moisture saturation level. The calculated network permeabilities are compared with experimental data for calcium silicate and ceramic brick and a good agreement is observed.  相似文献   

11.
12.
Inlet instabilities in the capillary flow of polyethylene melts   总被引:1,自引:0,他引:1  
Inlet instabilities in the capillary flow of polyethylene melts were studied in this work. Extrudate distortions in branched polyethylenes, produced by unstable upstream flow, were found to be accompanied by pressure oscillations that do not have their origin in the slip phenomenon, but on polymer compressibility. The absence of slip was clearly evidenced in the experiments, and the differences between pressure oscillations occurring in linear and branched polymers are shown.Pressure oscillations in the capillary flow of branched polyethylenes were found to be made up of at least two components of different frequency and amplitude. These two components were identified with different bulk defects appearing in the extrudates. Information about the dynamics of vortices upstream of the contraction and extrudate distortions is obtained from the analysis of pressure oscillations.The influence of capillary entrance angle on flow curves was also investigated. From the results, it is concluded that the extensional component of the flow in the contraction is the main factor responsible for the slope change usually found in the log-log flow curves of both linear and branched polyethylenes.  相似文献   

13.
The frequency dependence of the amplitude of the wave excitation mobilizing a droplet trapped in a capillary constriction is determined. The effect of droplet viscosity is analyzed. The problem of free longitudinal oscillations of a viscous-fluid droplet in a capillary constriction is considered. The influence of the surface tension, the droplet volume, and the constriction shape on the natural frequency of droplet longitudinal oscillations is studied. A formula for calculating the droplet natural frequency in the conical constriction is obtained and analyzed.  相似文献   

14.
Pore Scale Modeling of Rate Effects in Imbibition   总被引:3,自引:0,他引:3  
We use pore scale network modeling to study the effects of flow rate and contact angle on imbibition relative permeabilities. The model accounts for flow in wetting layers that occupy roughness or crevices in the pore space. Viscous forces are accounted for by solving for the wetting phase pressure and assuming a fixed conductance in wetting layers. Three-dimensional simulations model granular media, whereas two-dimensional runs represent fracture flow.We identify five generic types of displacement pattern as we vary capillary number, contact angle, and initial wetting phase saturation: flat frontal advance, dendritic frontal advance, bond percolation, compact cluster growth, and ramified cluster growth. Using phase diagrams we quantify the range of physical properties under which each regime is observed. The work explains apparently inconsistent experimental measurements of relative permeability in granular media and fractures.  相似文献   

15.
In dentin restoration, collagen fiber network infiltration is an issue. Using data from the literature, we have constructed a relevant numerical geometrical model of the network. The specificity of our model is that the fibers are taken into account implicitly using a regularized Heaviside function. This function is either used to set the viscosity or to localize the contact line where capillary forces are applied. A level set technique with respect to fluid infiltration front tracking in five fiber networks using the level set method and Navier–Stokes equations with capillary terms is used to point out efficient critical infiltration parameters. A variational formulation which can be implemented in a finite elements model is proposed both for the infiltration front and the contact line. Because of lack of knowledge on fiber orientation, different configurations were tested through permeability assessment of the whole network. Fiber orientation, interfibrillar space and contact angle influence were investigated.  相似文献   

16.
The injection capillary flow of various unfilled and glass fibre or calcium carbonate filled polypropylene and nylon 6.6 melts is studied using either a single capillary of five capillaries in series, separated by small reservoirs. Only unfilled nylon 6.6 yields instability during flow through a single capillary due to mechanochemical degradation in the capillary at extremely high shear rates above 5 × 105 s?1. It is found that only short glass fibre reinforced polypropylene yields high frequency oscillations in the reservoir pressure and extrudate diameter and has discontinuity in the flow curve when the apparent shear rate is above 4 × 105 s?1 and the flow is through multiple capillaries. Further increase in the shear rate restores the stable flow. The intensity of the oscillations and the range of shear rate during which unstable flow occurs are increased with increasing melt temperature. The mechanism of this unstable flow is investigated by studying fibre orientation at the capillary entrance and exit using mouldings simulating capillary entry-exit flows.  相似文献   

17.
A new macroscale model of a two-phase flow in porous media is suggested. It takes into consideration a typical configuration of phase distribution within pores in the form of a repetitive field of mobile menisci. These phase interfaces give rise to the appearance of a new term in the momentum balance equation, which describes a vectorial field of capillary forces. To derive the model, a phenomenological approach is developed, based on introducing a special continuum called the Meniscus-continuum. Its properties, such as a unique flow velocity, an averaged viscosity, a compensation mechanism and a duplication mechanism, are derived from a microscale analysis. The closure relations to the phenomenological model are obtained from a theoretical model of stochastic meniscus stream and from numerical simulations based on network models of porous media. The obtained transport equation remains hyperbolic even if the capillary forces are dominated, in contrast to the classic model which is parabolic. For the case of one space dimension, the analytical solutions are obtained, which manifest non-classical effects as double displacement fronts or counter-current fronts.  相似文献   

18.
The length and spatial distribution of the touching-vugs channels affect the degree of permeability variations and is the main contributor to heterogeneity in vuggy carbonates. Hence, this article focuses on vug connectivity characterization and its impact on fluid flow. A whole core sample was scanned by X-ray computed tomography (CT). Image segmentation was used to obtain a binarized three-dimensional (3D) model of the vuggy pore space. Analysis of the binarized 3D model is used to calculate the correlation function and correlation length for the vuggy pore space. Connectivity analysis of the binarized 3D model shows that 79% of the vugs connected network spanning along the sample. The remaining 21% vug porosity exists in a large number of isolated vugs. The correlation length for the connected vug network is found to be larger than for vugs in general. NMR T 2 measurements at increasing capillary pressure is tested on the vuggy material and used to investigate the amount of connected- and isolated vugs. The results verify the large fraction of connected vugs. Application of NMR T 2 measurements in combination with capillary pressure experiments can also reveal matrix properties that play an important role in recovery processes. The transition between non-Fickian and Fickian regimes for tracer/solute transport is studied by laboratory experiments performed at various sample lengths, from cm to m scale. For the largest sample measured in our experiments show that effluent concentration curve conform to the CDE solution, suggesting that the Fickian regime has been established.  相似文献   

19.
Most clastic reservoirs display an intermediate type of wettability. Intermediate wettability covers several local wetting configurations like fractional wet and mixed-wet where the oil-wet sites could either be in the large or smaller pores. Clastic reservoirs show a large variation in fluid flow properties. A classical invasion–percolation network simulator is used to investigate properties of different intermediate wet situations. Variation in wetting properties like contact angles, process dependent contact angles, contact angle distribution, and fraction of oil wet sites are investigated. The fluid flow properties analysed in particular are residual oil saturation and normalized endpoint relative permeability. Results from network modelling have been compared to reservoir core analysis data. The network models applied are at the capillary limit, while the core flood results are clearly viscous influenced. Even though network modelling does not cover all the physics involved in fluid displacement processes, results show that data from simulations are sufficient to present trends in fluid flow properties which are comparable to experimental data.  相似文献   

20.
Pore networks can be extracted from 3D rock images to accurately predict multi-phase flow properties of rocks by network flow simulation. However, the predicted flow properties may be sensitive to the extracted pore network if it is small, even though its underlying characteristics are representative. Therefore, it is a challenge to investigate the effects on flow properties of microscopic rock features individually and collectively based on small samples. In this article, a new approach is introduced to generate from an initial network a stochastic network of arbitrary size that has the same flow properties as the parent network. Firstly, we characterise the realistic parent network in terms of distributions of the geometrical pore properties and correlations between these properties, as well as the connectivity function describing the detailed network topology. Secondly, to create a stochastic network of arbitrary size, we generate the required number of nodes and bonds with the correlated properties of the original network. The nodes are randomly located in the given network domain and connected by bonds according to the strongest correlation between node and bond properties, while honouring the connectivity function. Thirdly, using a state-of-the-art two-phase flow network model, we demonstrate for two samples that the rock flow properties (capillary pressure, absolute and relative permeability) are preserved in the stochastic networks, in particular, if the latter are larger than the original, or the method reveals that the size of the original sample is not representative. We also show the information that is necessary to reproduce the realistic networks correctly, in particular the connectivity function. This approach forms the basis for the stochastic generation of networks from multiple rock images at different resolutions by combining the relevant statistics from the corresponding networks, which will be presented in a future publication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号