首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of simple imidazolium-based ligand precursors containing a 1,3-alkylidene-2,4,6-trimethylbenzene spacer was examined and different synthetic protocols were applied depending on the nature of the alkylidene arm. For a methylene arm, simple dications 5a,b.2CI were obtained directly. The higher homologue counterparts were conveniently prepared by general multistep routes following a five-step sequence for ethylene dications 6a,b.2Br or a six-step sequence for propylene dications 7a,b.2Br in > or = 52% overall yield. Imidazolium salts based on the shorter methylene spacer were used to prepare palladium complexes (17-20) with N-heterocyclic carbenes via transmetallation from well-defined silver compounds or directly in basic conditions. In order to facilitate spectroscopic characterisation of the palladium species two [Pd(allyl)(bis-oxazoline)]+ (25-26) complexes with the same ligand bridge were synthesized. [PdX2bisL] complexes appeared in solution as mixtures of species, mononuclear with cis- or trans-geometry or oligomeric compounds. The reaction of [PdCl(allyl)]2 and micro-bis(carbene)(AgX)2 complexes in 1 : 1 or in 0.5 : 1 ratio leads to binuclear compounds [Pd2Cl2(allyl)2(micro-bis-carbene)] (19a,19b) and to very labile monomeric [Pd(allyl)(bis-carbene)]+ (20a,20b) compounds, respectively. The preparation of analogous [Pd(allyl)(bis-oxazoline)]+ complexes showed the formation of one of the four possible isomers. [Pd(allyl)(bis-oxazoline)]PF6 complexes were inactive as catalytic precursors in the allylic substitution reaction.  相似文献   

2.
The axially chiral ligands 2-(diphenylphosphanyl)-2'-methoxy-1,1'-binaphthalene (MOP; 6) and 2'-dimethylamino-2-(diphenylphosphanyl)-1,1'-binaphthalene (MAP; 7) coordinate to a cationic allylpalladium fragment in an unusual bidentate (P,C)-mode through the triarylphosphane and ipso-carbon atom (C1'). The readily prepared MAP and MOP complexes [Pd[(P,C)-(L)](n3-allyl)][OTf] (9 (L = 7) and 10 (L = 6)) have been characterised in solution (NMR), in which two diastereoisomeric rotamers are observed. The stereochemical identity of the rotamers is established by one- and two-dimensional NMR spectroscopy experiments. In both the solid state and in solution, the allyl unit is shown to coordinate in a slightly distorted n3-mode that results in a more alkene-like character at the allyl terminus trans to phosphane ligand. The opposite allyl terminus, which is trans to the ipsocarbon atom (C1'), is more strongly bound and the dominant allyl stereodynamic process involves C-C bond rotation in an n'-allyl intermediate bound through this carbon. Palladium complexes of MAP and MOP are very efficient catalysts for allylic alkylation of racemic cyclopentenyl pivalate with [NaCH(CO2Me)2] in THF. Isotopic desymmetrisation revealed that the reaction occurs with powerful stereochemical memory effects and consequently with low global ee values. The memory effect is suggested to arise through selective generation of diastereoisomeric [Pd[(P,C)-L](n3-cyclopentenyl)]+ ions (L = MAP or MOP) and subsequent capture by nucleophile before ion-pair collapse or equilibration occurs.  相似文献   

3.
Under the conditions of transfer hydrogenation employing an iridium catalyst generated in situ from [Ir(cod)Cl]2, chiral phosphine ligand (R)-BINAP or (R)-Cl,MeO-BIPHEP, and m-nitrobenzoic acid, allyl acetate couples to allylic alcohols 1a-c, aliphatic alcohols 1d-l, and benzylic alcohols 1m-u to furnish products of carbonyl allylation 3a-u with exceptional levels of asymmetric induction. The very same set of optically enriched carbonyl allylation products 3a-u are accessible from enals 2a-c, aliphatic aldehydes 2d-l, and aryl aldehydes 2m-u, using iridium catalysts ligated by (-)-TMBTP or (R)-Cl,MeO-BIPHEP under identical conditions, but employing isopropanol as a hydrogen donor. A catalytically active cyclometallated complex V, which arises upon ortho-C-H insertion of iridium onto m-nitrobenzoic acid, was characterized by single-crystal X-ray diffraction. The results of isotopic labeling are consistent with intervention of symmetric iridium pi-allyl intermediates or rapid interconversion of sigma-allyl haptomers through the agency of a symmetric pi-allyl. Competition experiments demonstrate rapid and reversible hydrogenation-dehydrogenation of the carbonyl partner in advance of C-C coupling. However, the coupling products, which are homoallylic alcohols, experience very little erosion of optical purity by way of redox equilibration under the coupling conditions, although isopropanol, a secondary alcohol, may serve as terminal reductant. A plausible catalytic mechanism accounting for these observations is proposed, along with a stereochemical model that accounts for the observed sense of absolute stereoinduction. This protocol for asymmetric carbonyl allylation transcends the barriers imposed by oxidation level and the use of preformed allyl metal reagents.  相似文献   

4.
Shimada T  Kina A  Ikeda S  Hayashi T 《Organic letters》2002,4(16):2799-2801
[reaction: see text] New axially chiral 2,2'-bipyridine N,N'-dioxides were obtained by a new method that does not involve any procedures for the separation of enantiomers. One of the dioxides, (R)-3,3'-bis(hydroxymethyl)-6,6'-diphenyl-2,2'-bipyridine N,N'-dioxide, exhibited extremely high catalytic activity for the asymmetric allylation of aldehydes with allyl(trichloro)silane. The allylation of aromatic aldehydes proceeded in the presence of 0.01 or 0.1 mol % of the dioxide catalyst to give the corresponding homoallyl alcohols of up to 98% ee.  相似文献   

5.
Kuwano R  Uchida K  Ito Y 《Organic letters》2003,5(12):2177-2179
[reaction: see text] The chiral palladium complex generated in situ from [Pd(eta(3)-allyl)Cl](2) and (R)-BINAP is a good catalyst for the catalytic asymmetric allylation of 1,3-diketones. The reaction provided chiral 2,2-dialkyl-1,3-diketones with 64-89% ee in high yields (13 examples). Enantiomeric excesses are strongly affected by the gamma-substituent of the allylic substrates. A variety of unsymmetrical 1,3-diketones were alkylated with cinnamyl acetate in good enantioselectivities via use of the BINAP-palladium catalyst (77-89% ee).  相似文献   

6.
The Pd‐catalyzed decarboxylative allylation of α‐(diphenylmethylene)imino esters ( 1 ) or allyl diphenylglycinate imines ( 2 ) is an efficient method to construct new C(sp3)? C(sp3) bonds. The detailed mechanism of this reaction was studied by theoretical calculations [ONIOM(B3LYP/LANL2DZ+p:PM6)] combined with experimental observations. The overall catalytic cycle was found to consist of three steps: oxidative addition, decarboxylation, and reductive allylation. The oxidative addition of 1 to [(dba)Pd(PPh3)2] (dba=dibenzylideneacetone) produces an allylpalladium cation and a carboxylate anion with a low activation barrier of +9.1 kcal mol?1. The following rate‐determining decarboxylation proceeds via a solvent‐exposed α‐imino carboxylate anion rather than an O‐ligated allylpalladium carboxylate with an activation barrier of +22.7 kcal mol?1. The 2‐azaallyl anion generated by this decarboxylation attacks the face of the allyl ligand opposite to the Pd center in an outer‐sphere process to produce major product 3 , with a lower activation barrier than that of the minor product 4 . A positive linear Hammett correlation [ρ=1.10 for the PPh3 ligand] with the observed regioselectivity ( 3 versus 4 ) supports an outer‐sphere pathway for the allylation step. When Pd combined with the bis(diphenylphosphino)butane (dppb) ligand is employed as a catalyst, the decarboxylation still proceeds via the free carboxylate anion without direct assistance of the cationic Pd center. Consistent with experimental observations, electron‐withdrawing substituents on 2 were calculated to have lower activation barriers for decarboxylation and, thus, accelerate the overall reaction rates.  相似文献   

7.
The synthetic scope of the allyl-palladium chemistry can be extended to involve electrophilic reagents. The greatest challenge in these reactions is the catalytic generation of an allyl-palladium intermediate incorporating a nucleophilic allyl moiety. A vast majority of the published reactions that involve palladium-catalyzed allylation of electrophiles proceed via bis(allyl)palladium intermediates. The eta(1)-moiety of the bis(allyl)palladium intermediates reacts with electrophiles, including aldehydes, imines, or Michael acceptors. Recently, catalytic electrophilic allylations via mono-allylpalladium complexes were also presented by employment of so-called "pincer complex" catalysts.  相似文献   

8.
[reaction: see text] Reactions of the bifunctional allylstannane 2-(chloromethyl)-3-(tributylstannyl)propene with aldehydes have been examined. These generally occur in high yields using Lewis acid promoters and the products can be isolated and purified without incident. Good yields and high enantioselectivities are also realized in catalytic asymmetric allylations (CAA reactions) using the previously described BITIP catalyst system. Protection of the free hydroxyl can be accomplished without cyclization to the derived tetrahydrofuran, although this transformation is also facile. The utility of the incorporated allyl chloride functionality allows for the obvious use of such products in reactions with nucleophiles. Use of these products in a less obvious connective strategy is demonstrated in the synthesis of the C12-C27 segment of bryostatin 1 where a connective, or "lynchpin", double-allylation process was employed. The beta-hydroxy allyl chloride obtained from an initial chelation-controlled allylation of aldehyde 16 was converted to allylstannane 19 and applied in a second allylation reaction, thus allowing for a highly convergent synthesis of the bryostatin C ring backbone in a stereoselective fashion.  相似文献   

9.
The synthesis and catalytic applications of a new aryl-based unsymmetrical PCS-pincer complex are reported. Preparation of the robust air- and moisture-stable PCS-pincer palladium complex 5[X] started from the symmetrical alpha,alpha'-dibromo-meta-xylene and involved the selective substitution of one bromide by PPh(2)(BH(3)), followed by substitution of the second bromide by SPh and subsequent introduction of the palladium. The new PCS complexes (5[X]) were employed as catalysts in two important organic transformations. Firstly, complex 5[Cl] displays high catalytic activity in aldol reactions but enters the catalytic cycle as a precatalyst. Secondly, complex 5[BF(4)] displays tandem catalytic activity in the coupling of allyl chlorides with aldehydes and imines in the presence of hexamethylditin. In these tandem catalytic reactions the first process is the conversion of allyl chlorides into trimethylallyltin (and trimethyltin chloride) with Sn(2)Me(6), which is followed by catalytic allylation of aldehyde and sulfonimine substrates. In addition, we present a new catalytic process for the one-pot allylation of 4-nitrobenzaldehyde with vinyloxirane. The catalytic performance of the novel PCS-pincer palladium complex was compared to those of its symmetrical PCP- and SCS-pincer complex analogues. It was concluded that the unsymmetrical PCS complex advantageously unifies the attractive catalytic features of the corresponding symmetrical pincer complexes including both (pi-) electron-withdrawing (such as phosphorus) or (sigma-) electron-donating (such as sulfur and nitrogen) heteroatoms. Thus, in the aldol reaction the PCS-pincer palladium complex 5[X] provides a high turnover frequency, while in the tandem process both reactions are catalysed with sufficiently high activity.  相似文献   

10.
A palladium-catalyzed asymmetric allylation of isatins with allylic alcohols as an allyl donor was developed by using chiral spiro phosphoramidite ligands. A variety of chiral tertiary homoallylic alcohols 3-allyl-3-hydroxy-2-oxindoles were prepared directly from allylic alcohols in one step with excellent yields and moderate enantioselectivities. This represents the first catalytic asymmetric allylation of ketones with allylic alcohol as the allylating agent.  相似文献   

11.
Kamei T  Fujita K  Itami K  Yoshida J 《Organic letters》2005,7(21):4725-4728
[reaction: see text] We have developed an efficient copper-catalyzed allylation of carbonyl derivatives using allyl(2-pyridyl)silanes, in which the strong directing effect of the 2-pyridyl group was observed. A useful synthesis and allylation of substituted allyl(2-pyridyl)silanes is also described.  相似文献   

12.
A novel Pd(II) Benzo-15-crown-5 complex [Na(B15C5)]2[Pd(SCN)4] has been isolated and characterized by IR and X-ray diffraction analysis.The crystal structure belongs to monoclinic,space group P21/n with cell dimensions,a=1.0164(6),b=1.3743(3),c=1.4987(7) nm,b=95.248(6)o ,V=2.0847nm3,Z=2,F(000)=944,R=0.053,Rw=0.072.The compound consists of two [Na(B15C5)]+ complex cations and a [Pd(SCN)4]2- complex anion.Each sodium ion is coordinated by five crown ether oxygen atoms and one N atom from the SCN group of [Pd(SCN)4]2- to form stable neutral complex.  相似文献   

13.
[reaction: see text] Catalytic asymmetric allylation of 3,4-dihydro-6,7-dimethoxyisoquinoline was carried out using allyltrimethoxysilane in the presence of Cu(I) and tol-BINAP. The allyl adduct thus obtained was transformed to a chiral synthetic intermediate for (-)-emetine in good yield. The procedure was applied to the total synthesis of ent-emetine.  相似文献   

14.
The highly active Friedel-Crafts alkylation (FCA) catalyst, [Ir(COD)Cl(SnCl3)(SnCl4)(arene)]+Cl- (1-SnCl4), is easily generated in one-pot from [Ir(COD)Cl]2 or [Ir(COD)(mu-Cl)Cl(SnCl3)]2 (1) and SnCl4. The reaction of arenes, heteroarenes with benzyl, and allyl alcohols is promoted by 1-SnCl4 (1 mol %) with high turnover frequency. Kinetic evidence is presented to establish FCA pattern. From dual-catalyst combination studies varying the transition metal and main group metal partner, the efficiency of the present catalysts is attributed to the electrophilic "IrIII-SnIV" core.  相似文献   

15.
The reaction of allyl ethyl carbonates with isocyanides in the presence of a catalytic amount of Pd(OAc)2 provided ketenimines through β‐hydride elimination of the allyl imidoylpalladium intermediates. The insertion of the isocyanide into the π‐allyl Pd complex proceeded via an unusual η1‐allyl Pd species. The resulting ketenimines were hydrolyzed to β,γ‐unsaturated carboxamides during purification by flash column chromatography on silica gel or converted in situ into 1,5‐disubstituted tetrazoles by [3+2] cycloaddition with hydrazoic acid or trimethylsilyl azide.  相似文献   

16.
The allylation, crotylation and prenylation of aldehydes and ketones with stable and easily handled allylic carbonates is promoted by a Ti/Pd catalytic system. This Ti/Pd bimetallic system is especially convenient for the allylation of ketones, which are infrequent substrates in other related protocols, and can be carried out intramolecularly to yield five- and six-membered cyclic products with good stereoselectivities. In addition, Ti/Pd-mediated reductions and Würtz-type dimerisation reactions can be readily carried out from allyl carbonates and carboxylates.  相似文献   

17.
Without prior activation of allyl alcohols, allylation of a variety of active methylene compounds with allyl alcohols proceeds smoothly at rt-50°C in the presence of catalytic amounts of Pd(OAc)2 (1-10 mol%), Et3B (30-240 mol%), a phosphine ligand (1-20 mol%), and a base (0 to 50-60 mol%).  相似文献   

18.
Novel stereoselective synthesis of 3-azabicyclo[3.1.0]hexanes from allenenes is presented. Treatment of N-protected 4-alkyl-4-(N-allyl)amino allenes with allyl carbonate and a catalytic amount of Pd(2)(dba)(3).CHCl(3) in MeCN leads to stereoselective formation of the 3-azabicyclo[3.1.0]hexane framework in moderate to good yields. [reaction: see text]  相似文献   

19.
Under catalysis of Pd(OAc)2-(P-n-Bu)3, Et2Zn promotes a variety of allyl alcohols to undergo nucleophilic allylation of aliphatic aldehydes and ketones at room temperature and provides homoallyl alcohols in 60-90 and ca. 60% isolated yield, respectively. The reaction is irreversible and kinetically controlled, and unique regio- and stereoselectivities observed for the allylation with unsymmetrically substituted allyl alcohols are discussed.  相似文献   

20.
fac-[RuII(Cl)(dpp)(L3)]+ (L3 = tris(pyrid-2-yl)methoxymethane (tpmm) = [1A]+ and tris(pyrid-2-yl)pentoxymethane (tppm) = [1B]+ and dpp = di(pyrazol-1-yl)propane) rapidly undergo ligand substitution with water to form fac-[RuII(H2O)(dpp)(L3)]2+ (L3 = tpmm = [2A]2+ and tppm = [2B]2+). In the structure of [2A]2+, the distorted octahedral arrangement of ligands around Ru is evident by a long Ru(1)-O(40) of 2.172(3) A and a large angle O(40)-Ru(1)-N(51) of 96.95(14) degrees . The remarkably short distance between O(40) of H2O and H(45a) of dpp confirms the heteroscorpionate ligand effect of dpp on H2O. [2B]2+ aerobically catalyzes methyl p-tolyl sulfide to methyl p-tolyl sulfoxide in 1,2-dichlorobenzene at 25.0 +/- 0.1 degrees C under 11.4 psi of O2. Experimental facts in support of this aerobic sulfide oxidation are the absence of H2O2 and the oxidative reactivity of the putative Ru(IV)-oxo intermediate toward methyl p-tolyl sulfide, 2-propanol, and allyl alcohol. This study provides the first documented example of aerobic-sulfide oxidation catalyzed by the remarkably labile heteroscorpionate Ru(II)-aqua complex without the formation of a highly reactive peroxide as an intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号