首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work deals with study of uptake behavior of zinc and mercury ions by hydrous ceric oxide applying a radiotracer technique. The influence of various parameters such as concentration, temperature and pH have been examined. It was observed that the amount of zinc and mercury ions adsorbed at equilibrium increases with increase of adsorptive concentration (1.0·10−7 to 1.0·10−2M), temperature (303–333K) and pH (ca. 3–10). Concentration dependence data agree well with the classical Freundlich isotherm. The radiation stability of hydrous ceric oxide was also investigated by exposing it to a 11.1 GBq (Ra−Be) source associated with γ-dose of 1.72 Gy·h−1 and also using a60Co source (4.66 kGy·h−1). Adsorption of these metal ions in the presence of some monovalent and divalent cations and complexing agents has also been included in the study.  相似文献   

2.
Adsorption behavior of zinc, cadmium and mercury ions on hydrous titanium oxide in aqueous solution has been studied as a function of concentration of the metal ion (10−2−10−7M), temperature (303–333 K) and pH 3–10 by applying radiotracer technique. The kinetics of adsorption follows the first order rate law and agrees well with the classical Freundlich isotherm. The removal was found to increase with increasing pH but was suppressed in the presence of EDTA. The overall process is endothermic and irreversible in nature. Part VII. Efficient removal of cadmium ions from aqueous solutions by hydrous manganese oxideS. P. Mishra, D. Tiwary, Radiochim. Acta, 80 (1998) 213.  相似文献   

3.
The diffusion behavior of hydrogen in the oxide films of zircaloy-4 specimens containing different size of Zr(Fe,Cr)2 precipitates was examined. In the case of the specimen containing fine precipitates, hydrogen diffused uniformly through the zirconium oxide phase. The diffusion coefficient was 2·10−21 m2·s−1 at room temperature and 6·10−19 m2·s−1 at 673 K. The transport rate of hydrogen in the oxide film of the specimen containing coarse precipitates was significantly higher than that of the specimen containing fine ones at both room temperature and 673 K.  相似文献   

4.
The heat capacity of PbMO3 (M=Ti, Zr and Hf) at constant pressure was measured using a differential scanning calorimeter (DSC) from room temperature up to 870 K. Large anomalies were found in the heat capacity curves, corresponding to the ferroelectricparaelectric phase transition in PbTiO3 (PT), the antiferroelectric-paraelectric phase transitions in PbZrO3 (PZ) and PbHfO3 (PH). The transition entropies were estimated as 7.3 J K−1 mol−1 (PT), 9.9 J K−1 mol−1 (PZ) and 9.3 J K−1 mol−1 (PH). These values of transition entropies are much larger than that of a typical displacive-type phase transition.  相似文献   

5.
Spiropyrans are the most studied families of func- tional materials due to their reversible structural con- version in response to external optical, chemical, and thermal stimulation[1]. Irradiation with ultraviolet light causes formation of an extended π-conjugation open form (merocyanine form) by heterolytic cleavage of the C (spiro)-O bond, which generates an intense ab- sorption in the visible region. Under the irradiating of visible light, the opened form will come back to the closed spi…  相似文献   

6.
Heat capacity C p(T) of the crystalline dl-cysteine was measured on heating the system from 6 to 309 K by adiabatic calorimetry; thermodynamic functions were calculated based on these data smoothed in the temperature range 6–273.15 K. The values of heat capacity, entropy, and enthalpy at 273.15 K were equal to 142.4, 153.3, and 213.80 J K−1 mol−1, respectively. At about 300 K, a heat capacity peak was observed, which was interpreted as an evidence of a first-order phase transition. The enthalpy and the entropy of the transition are equal, respectively, to 2300 ± 50 and 7.6 ± 0.1 J K−1 mol−1.  相似文献   

7.
The molar heat capacities of an aqueous Li2B4O7 solution were measured with a precision automated adiabatic calorimeter in the temperature range from 80 to 356 K at a concentration of 0.3492 mol⋅kg−1. The occurrence of a phase transition was determined based on the changes in the curve of the heat capacity with temperature. A phase transition was observed at 271.72 K corresponding to the solid-liquid phase transition; the enthalpy and entropy of the phase transition were evaluated to be Δ H m = 4.110 kJ⋅mol−1 and Δ S m = 15.13 J⋅K−1⋅mol−1, respectively. Using polynomial equations and thermodynamic relationship, the thermodynamic functions [H T H 298.15] and [S T S 298.15] of the aqueous Li2B4O7 solution relative to 298.15 K were calculated in temperature range 80 to 355 K at intervals of 5 K. Values of the relative apparent molar heat capacities of the aqueous Li2B4O7 solution, C p, were calculated at every 5 K in temperature range from 80 to 355 K from the experimental heat capacities of the solution and the heat capacities of pure water.  相似文献   

8.
The removal of Ce(III) from aqueous solutions by hydrous manganese oxide (HMO) and hydrous stannic oxide (HSO) was studied as a function of concentrations (10−2−10−7 mol·dm−3) and pH (1.2–10.0) by using the radiotracer technique. The effects of co-ions and irradiation of HMO and HSO were also studied. The uptake of Ce(III) fitted well with the Freundlich adsorption isotherm. No significant desorption of pre-adsorbed Ce(III) in the studied temperature range (303–333 K) indicates that both the solids may be good adsorbents for the removal of Ce(III).  相似文献   

9.
The kinetics of reactions between phenylnitroso oxide, 4-CH3O-, 4-CH3-, or 4-Br-phenylnitroso oxide and triphenylphosphine in acetonitrile at 295 ± 2 K were studied using pulsed photolysis. Only trans-nitroso oxides enter this reaction. The rate constants of the reaction increase with increasing electron-acceptor properties of the substituent in the aromatic ring of nitroso oxide; they are on the order of 105 to 106 l mol−1 s−1. The extinction coefficient for trans-4-methylphenylnitroso oxide at 420 nm was estimated at 3.9 × 103 l mol−1 cm−1.  相似文献   

10.
The steady state growth of porous anodic alumina films in oxalate solutions at various conditions was studied by chronopotentiometry, mass balance and optical microscopy methods enabling determination of consumed Al, film mass and thickness, current efficiencies, Al3+ and O2− transport numbers across barrier layer, etc. The film thickness growth rate was found to be proportional to O2− anionic current. A high field ionic migration model was developed. It predicted that, during anodising, the local oxide density across barrier layer rises from 2.6 in Al|oxide to 4.59–5.22 g cm−3 in oxide|electrolyte interface with mean value ≈3.21–3.52 g cm−3. The field strength rises from the first to second interface. The mechanism of Al oxidation near the Al|oxide interface embraces the transformation of the Al lattice to a transient, rare oxide one sustained by field with comparable Al3+ spacing parameter. The oxide near the Al|oxide interface and around the density maximum in the oxide|electrolyte interface are under different levels of electro-restriction stresses. During relaxation, the oxide behaves like a solid-fluid material suppressing the initial density distribution.  相似文献   

11.
Indium tin oxide (ITO) thin films were deposited by mid frequency pulsed dual magnetron sputtering using a metallic alloy target with 10 wt.% tin in an atmosphere of argon and oxygen. The aim of the work was to study the interdependence of structural, electrical and optical properties of ITO films deposited in the reactive and transition target mode, respectively. The deposition rate in the transition mode exceeds the deposition rate in the reactive mode by a factor of six, a maximum value of 100 nm·m min−1 could be achieved. This corresponds to a static deposition rate of 200 nm min−1. The lowest electrical resistivity of 1.1·10−3 Ω cm was measured at samples deposited in the high oxygen flow range in the transition mode. The samples show a good transparency in the visible range corresponding to extinction coefficients being below 10−2. X-ray diffraction was used to characterise crystalline structure as well as film stress. ITO films prepared in the transition mode show a slightly preferred orientation in (211) direction, whereas films deposited in the reactive mode are strongly (222) oriented. Compared to undoped In2O3 all samples have an enlarged lattice. The lattice strain perpendicular to the surface is about 0.8% and 2.0% for films grown in the transition and the reactive mode, respectively. Deposition in the transition mode introduces a biaxial film stress in the range of −300 MPa, while stress in reactive mode samples is −1500 MPa.  相似文献   

12.
Calorimetric enthalpy changes in reactions have been measured for the formation of zinc and cadmium trimethylenediaminetetraacetates at 298.15 K and ionic strengths of 0.1. 0.5, 1.0 mol L−1 (KNO3). The standard thermodynamic parameters of the reactions studied were evaluated from calorimetric and potentiometric measurements under the same conditions. The results obtained were compared with the corresponding data on related compounds.  相似文献   

13.
The molar heat capacities of the room temperature ionic liquid 1-butylpyridinium tetrafluoroborate (BPBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C p,m [J K−1 mol−1]=181.43+51.297X −4.7816X 2−1.9734X 3+8.1048X 4+11.108X 5 [X=(T−135)/55] for the solid phase (80–190 K), C p,m [J K−1 mol−1]= 349.96+25.106X+9.1320X 2+19.368X 3+2.23X 4−8.8201X 5 [X=(T−225)/27] for the glass state (198–252 K), and C p,m[J K−1 mol−1]= 402.40+21.982X−3.0304X 2+3.6514X 3+3.4585X 4 [X=(T−338)/52] for the liquid phase (286–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BPBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BPBF4 was observed at 194.09 K, the enthalpy and entropy of the glass transition were determined to be ΔH g=2.157 kJ mol−1 and ΔS g=11.12 J K−1 mol−1, respectively. The result showed that the melting point of the BPBF4 is 279.79 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 8.453 kJ mol−1 and ΔS m=30.21 J K−1 mol−1. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BPBF4 was determined to be Δc H m0 = −5451±3 kJ mol−1. The standard molar enthalpy of formation of BPBF4 was evaluated to be Δf H m0 = −1356.3±0.8 kJ mol−1 at T=298.150±0.001 K.  相似文献   

14.
A complex of Erbium perchloric acid coordinated with l-aspartic acid and imidazole, Er2(Asp)2(Im)8(ClO4)6·10H2O was synthesized for the first time. It was characterized by IR and elements analysis. The heat capacity and thermodynamic properties of the complex were studied with an adiabatic calorimeter (AC) from 80 to 390 K and differential scanning calorimetry (DSC) from 100 to 300 K. Glass transition and phase transition were discovered at 220.45 and 246.15 K, respectively. The glass transition was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4− ions and the phase transition was attributed to the orientational order/disorder process of ClO4− ions. The thermodynamic functions [H T  − H 298.15] and [S T  − S 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC).  相似文献   

15.
A thermodynamic study of the interaction of bovine carbonic anhydrase II, CAII, with zinc ion was carried out by using isothermal titration calorimetry (ITC) at 300, 310 and 320 K in Tris buffer solutions at pH=7.5. The heats of Zn2++ CAII interaction are reported and analyzed in terms of the new solvation theory. It was indicated that there are three identical and non-cooperative sites on CAII for Zn2+. The binding of a zinc ion is exothermic with dissociation equilibrium constants of 78.32, 95.81 and 116.70 mmol⋅L−1 at 300, 310 and 320 K respectively.  相似文献   

16.
The molar heat capacities C p,m of 2,2-dimethyl-1,3-propanediol were measured in the temperature range from 78 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-solid and a solid-liquid phase transitions were found at T-314.304 and 402.402 K, respectively, from the experimental C p-T curve. The molar enthalpies and entropies of these transitions were determined to be 14.78 kJ mol−1, 47.01 J K−1 mol for the solid-solid transition and 7.518 kJ mol−1, 18.68 J K−1 mol−1 for the solid-liquid transition, respectively. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 310 K, C p,m/(J K−1 mol−1)=117.72+58.8022x+3.0964x 2+6.87363x 3−13.922x 4+9.8889x 5+16.195x 6; x=[(T/K)−195]/115. In the temperature range of 325 to 395 K, C p,m/(J K−1 mol−1)=290.74+22.767x−0.6247x 2−0.8716x 3−4.0159x 4−0.2878x 5+1.7244x 6; x=[(T/K)−360]/35. The thermodynamic functions H TH 298.15 and S TS 298.15, were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The thermostability of the compound was further tested by DSC and TG measurements. The results were in agreement with those obtained by adiabatic calorimetry.  相似文献   

17.
In order to enhance the efficiency of pyrochemical technology, especially electrorefining process, physicochemical data of trivalent uranium in LiCl–KCl eutectic at 773 K were measured, including molar absorptivity, formal potential and diffusion coefficient of U3+ ions. The molar absorptivities of U3+ were determined to be 765 ± 48 and 686 ± 39 M−1 cm−1 at 465 and 550 nm, respectively. The formal potential of U3+/U4+ redox couple and diffusion coefficient of U3+ ions were measured to be −0.308 V vs. Ag/Ag+ and 8.7 × 10−6 M−1 cm−1, respectively. To elucidate the chemical behavior of U3+ ions under the existence of oxide ions, U3+ ions were reacted with oxides ions in situ produced at the LiCl–KCl media. Surprisingly, it was revealed from XRD patterns that UO2 was formed from the reaction between U3+ ions and O2− ions with the molar ratio of 1:1.  相似文献   

18.
Papánková  B.  Vrbová  M.  Boča  R.  Šimon  P.  Falk  K.  Miehe  G.  Fuess  H. 《Journal of Thermal Analysis and Calorimetry》2002,67(3):721-731
Heat flow to [Fe(bzimpy)2](ClO4)2⋅0.25H2O complex (bzimpy=2,6-bis(benzimidazol-2-yl)pyridine) (I) was measured between 300 and 460 K by differential scanning calorimetry. This exhibits a well-developed peak characteristic of the first-order phase transitions at temperature 403 K. The enthalpy and entropy of transition from low-spin to high-spin state has been determined to be ΔH=17 kJ mol−1 and ΔS=43.0 Jmol−1 K−1. Heat flow to [Fe(bzimpy−1H)2]⋅H2O complex (bzimpy −1H=deprotonated bzimpy) (II) was measured between 300 and 580 K. The spin crossover in this system is accompanied with liberation of crystal water on the first heating. To monitor the structural changes during the spin crossover, powder diffraction data have been collected as a function of temperature. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The low-temperature molar heat capacities of CoPc and CoTMPP were measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 223 to 413 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range for CoPc. However, a structural change was found to be nonreversible for CoTMPP in the temperature range of 368–403 K, which was further validated by the results of IR and XRD. The molar enthalpy ΔH m and entropy ΔS m of phase transition of the CoTMPP were determined to be 3.301 kJ mol−1 and 8.596 J K−1 mol−1, respectively. The thermodynamic parameters of CoPc and CoTMPP such as entropy and enthalpy relative to reference temperature 298.15 K were derived based on the above molar heat capacity data. Moreover, the thermal stability of these two compounds was further investigated through TG measurements. Three steps of mass loss were observed in the TG curve for CoPc and five steps for CoTMPP.  相似文献   

20.
The minimum concentration of niobium to stabilize the fluorite-type f.c.c. phase in the Bi2O3–Nb2O5 oxide system at temperatures below 996 K was ascertained to be about 10 mol%. Thermal expansion, electrical conductivity and crystal lattice parameters of the Bi(Nb)O1.5+δ solid solutions decrease with increasing niobium content. Thermal expansion coefficients were calculated from the dilatometric data to be (10.314.5)×10−6 K−1 at temperatures in the range 300–700 K and (17.526.0)×10−6 K−1 at 700–1100 K. The conductivity of the Bi1− x Nb x O1.5+δ ceramics is predominantly ionic. The p-type electronic transference numbers of the Bi(Nb)O1.5+δ solid solutions in air were determined to be less than 0.1. Annealing at temperatures below 900 K results in a sharp decrease in conductivity of the Bi1− x Nb x O1.5+δ ceramics. Received: 18 August 1997 / Accepted: 20 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号