首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The new ruthenium complex [Ru(N3P)(OAc)][BPh4] ( 4 ), in which N3P is the N,P mixed tetradentate ligand N,N‐bis[(pyridin‐2‐yl)methyl]‐[2‐(diphenylphosphino)phenyl]methanamine was synthesized. The complex was found to be catalytically active for the endo cycloisomerization of alkynols. The catalytic reactions can be used to synthesize five‐, six‐, and seven‐membered endo‐cyclic enol ethers in good to excellent yields. A catalytic cycle involving a vinylidene intermediate was proposed for the catalytic reactions. Treatment of complex 4 with PhC?CH and H2O gave the alkyl complex [Ru(CH2Ph)(CO)(N3P)][BPh4] ( 30 ), which supports the assumption that the catalytic reactions involve addition of a hydroxyl group to the C?C bond of vinylidene ligands.  相似文献   

2.
Summary The catalytic hydrogenation of hex-1-ene in methanolic solution with [Rh(norbornadiene)Cl]2/(p-RC6H4)3 P (R=H, Me or OMe) systems preparedin situ has been measured. The catalytic activity shows a dependence on the ageing of the catalyst precursor solution in the presence of air. A spectroscopic study (visible region) has been carried out for the system with triphenyl phosphine and shows degradation with the formation of [Rh(norbornadiene)PPh3Cl] as an intermediate. It was demonstrated that the spectral changes and the consequent catalytic activity are due to PPh3 loss because of the oxygen dissolved in the media.  相似文献   

3.
To advance the catalytic applications of s‐block mixed‐metal complexes, sodium magnesiate [NaMg(CH2SiMe3)3] ( 1 ) is reported as an efficient precatalyst for the guanylation of a variety of anilines and secondary amines with carbodiimides. First examples of hydrophosphination of carbodiimides by using a Mg catalyst are also described. The catalytic ability of the mixed‐metal system is much greater than that of its homometallic components [NaCH2SiMe3] and [Mg(CH2SiMe3)2]. Stoichiometric studies suggest that magnesiate amido and guanidinate complexes are intermediates in these catalytic routes. Reactivity and kinetic studies imply that these guanylation reactions occur via (tris)amide intermediates that react with carbodiiimides in insertion steps. The rate law for the guanylation of N,N′‐diisopropylcarbodiimide with 4‐tert‐butylaniline catalyzed by 1 is first order with respect to [amine], [carbodiimide], and [catalyst], and the reaction shows a large kinetic isotopic effect, which is consistent with an amine‐assisted rate‐determining carbodiimide insertion transition state. Studies to assess the effect of sodium in these transformations denote a secondary role with little involvement in the catalytic cycle.  相似文献   

4.
1-Butyl-3-methylimidazolium dodecatungstophosphate catalyst ([bmim]3PW12O40) with high water tolerance was prepared from 1-butyl-3-methylimidazolium bromide ([bmim]Br) and phosphotungstic acid (H3PW12O40). The catalyst was characterized by means of Fourier transform infrared spectroscopy, thermogravimetry-differential scanning calorimetry, n-BuNH2 potentiometric titration, elemental analysis and so on. Its catalytic activity for esterification of ethanol and acetic acid to ethyl acetate was measured. The results show that there were three crystal-water molecules in the [bmim]3PW12O40 catalyst, and it preserved the primary Keggin structure and acid strength of H3PW12O40. The acid amount of [bmim]3PW12O40 catalyst was less than that of H3PW12O40. The [bmim]3PW12O40 catalyst exhibited higher catalytic activity and reusability in the esterification of ethanol and acetic acid to ethyl acetate. __________ Translated from Chinese Journal of Catalysis, 2008, 29(7) (in Chinese)  相似文献   

5.
A modified synthetic route for the complexes [Cu(II)5,7,12,14-tetramethyldinaphtho [b,i][1,4,8,11]tetraaza[14]annulene], [Cu(II)tmdnTAA], and [Cu(II) 5,7,12,14-tetramethyl-6,13-dichloro-dinaphtho[b,i][1,4,8,11]tetraaza[14]annulene], [Cu(II)dCltmdnTAA], is presented in this work. The electrochemical characterization of both complexes and their precursors, [bis(2,4-pentanedionato)copper(II)], [Cu(II)(acac)2] and [bis(3-chloro-2,4-pentanedionato)copper(II)], [Cu(II)(3-Cl-acac)2], respectively, under nitrogen and carbon dioxide is also presented. The voltammetric response of [Cu(II)(acac)2] and [Cu(II)(3-Cl-acac)2] are different compared to [Cu(II)tmdnTAA] and [Cu(II)dCltmdnTAA] under nitrogen. Precursors show the reduction of Cu(I) to Cu(0) and the tetraazadinaphtho[14]annulene complexes do not. The chlorine substituted complex has a lower reduction potential than the unsubstituted homologue under nitrogen atmosphere. However, the contrary response is obtained in the presence of carbon dioxide: the unsubstituted complex is more catalytic in terms of potential because the current discharge appears 270?mV shifted to the anodic region. These facts can be explained in terms of electronic and steric effects. The modified electrode obtained by oxidative electropolymerization of [Cu(II)tmdnTAA] over glassy carbon electrode presented a suitable amperometric response for the sulfite reduction in acidic medium (pH?=?2.7). A linear correlation was observed for the catalytic current and sulfite concentration between 0.6–6.0?mM range.  相似文献   

6.

The Friedel-Crafts reaction of phosphorus trichloride and benzene in [Et 4 N]Br-XAlCl 3 ([Et 4 N]Br = tetraethylammonium bromide) ionic liquids (ILs) was investigated for the clean synthesis of dichlorophenylphosphine (DCPP). A simple product isolation procedure was achieved, and the effects of IL's composition, reaction time, and quantity on this reaction were studied. The [Et 4 N]Br-XAlCl 3 ILs gave this reaction a green character. From the isolation experiments, it was found that (a) because of the formation of the complex of DCPP and AlCl 3 , the catalytic activity of the [Et 3 NH]Cl-XAlCl 3 ([Et 3 NH]Cl = triethylhydrogenamonium chloride) was reduced; (b) with the addition of quaternary ammonium to the IL's residue, additional DCPP could be recovered.  相似文献   

7.
The reaction of 6-[1-Aza-2-(dimethylamino)prop-l-enyl]-5-iodo-1,3-dimethyluracil (3) with various olefins in the presence of a catalytic amount of Pd(OAc)2 and 1.5 equiv. of K2CO3 in DMF at 120 °C gave the pyrido[2,3-d]pyrimidine derivatives (5a-b and 7a-d) in moderate to high yield.  相似文献   

8.
A magnetic nanocomposite based on graphene oxide was prepared. Fe3O4 nanoparticles were loaded on graphene oxide sheets and GO-Fe3O4 was covered by aniline-pyrrole copolymer to afford poly(Py-co-Ani)@GO-Fe3O4. This nanocomposite was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, vibrating sample magnetometry, X-ray diffraction, thermogravimetric analysis, and X-ray photoelectron spectroscopy techniques, and its catalytic activity was evaluated in the multicomponent synthesis of 2′-aminospiro[indeno[1,2-b]quinoxaline-11,4′-[4'H]pyran]-3′-carbonitrile and 2′-aminospiro[indeno-2,4′-[4'H]pyran]-3′-carbonitrile derivatives. This magnetically separable catalyst is heterogeneous noncorrosive, highly efficient, and reusable.  相似文献   

9.
To develop economical and phosphorus‐free catalysts for hydrogenation of ketones, three new complexes, [Ni(1R,2R‐dpen)2(H2O)Cl]2Cl2· 2Et2O (1), [Ni(1R,2R‐dpen)(phen)(CH3OH)2]Cl2·2CH3OH (2) and [Ni(1,8‐dan)2(DMF)Cl]2Cl2· 3H2O (3), and three reported compounds, [Ni(opda)(phen)Cl2]·CH3OH (4), [Ni(opda)2Cl2] (5) and [Ni(1,2‐dach)2]Cl2 (6), were prepared and the structures of new compounds were determined by single crystal X‐ray diffraction analysis, in which 1R,2R‐dpen, phen, 1,8‐dan, opda and 1,2‐dach denote 1R,2R‐1,2‐diphenylethylenediamine, 1,10‐phenanthroline, 1,8‐diaminonaphthalene, o‐phenylenediamine and 1,2‐diaminocyclohexane, respectively. The catalytic effects for hydrogenation of acetophenone of these compounds were tested. This revealed very poor or no catalytic effects of these complexes in transfer hydrogenation of acetophenone using isopropanol or HCOOH? NEt3 as hydrogen source. However, they presented much better catalytic effects in ionic hydrogenation of acetophenone using H2 gas as hydrogen source with a dependence of the catalytic effects on the base used in the hydrogenation reactions. The complexes represent a kind of green hydrogenation catalyst, although the conversion in the hydrogenation reactions is not as high as expected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In the presence of a catalytic amount of GaCl3, dimethyl 2‐(naphthalen‐1‐yl)cyclopropane‐1,1‐dicarboxylate 5 undergoes selective [3+2]‐annulation‐type dimerization to give a polysubstituted cyclopentane containing two naphthalenyl substituents in the vicinal position (Scheme 2). Treatment of the same cyclopropane with an equimolar amount of GaCl3?THF results in dimerization with electrophilic attack on each of the benzene rings to give [3+3] and [3+4] annulation products. The latter represent a new type of dimerization of donor? acceptor cyclopropanes. Finally, under conditions of double catalysis with GaCl3, 3,3,5,5‐tetrasubstituted 4,5‐dihydropyrazole, this cyclopropane‐dicarboxylate undergoes stereospecific dimerization as a result of electrophilic ipso‐attack to give a tetracyclic pentaleno[6a,1‐a]naphthalene derivative (Scheme 5). Possible reaction mechanisms are proposed.  相似文献   

11.
《合成通讯》2013,43(17):3063-3070
Abstract

Intramolecular [4+2] cycloaddition reactions of N-aryl imines generated in situ from anilines and the S-allyl derivatives of pyrazole aldehydes have been carried out in the presence of catalytic amounts of BiCl3 to provide the corresponding hexahydropyrazolo [4′,3′:5,6]thiopyrano[4,3-b]quinolines in excellent yields. The reactions are highly diastereoselective and the only cis products are isolated exclusively.  相似文献   

12.
A series of zinc complexes, [ L X ZnEt] ( 1–5 ) and [ L X Zn 2 (OAc) 3 ] (6–9) , associated with NNO‐tridentate Schiff base ligands (2‐(((2‐((cyclohexyl[methyl]amino)methyl)phenyl)imino)methyl)phenolate (CAP) derivatives), were synthesized, and their activity toward ring‐opening polymerization (ROP) of L‐lactide (LA) and the reaction of CO2 with cyclohexene oxide were also investigated. All of [ L X ZnEt] revealed excellent catalytic activity to ring‐opening polymerization (ROP) of LA in the presence of benzyl alcohol. Among them, [ L H ZnEt] (1) showed the highest activity with 82% conversation within 45 s. In contrast, [L X Zn 2 (OAc) 3 ] (6–9) were inactive in ROP of L‐lactide. In addition, all of these Zn complexes demonstrated moderate activity in the reaction of CO2 with cyclohexene oxide in the presence of Bu4NCl.  相似文献   

13.
A novel Brønsted acidic ionic liquid namely N,N-diethyl-N-sulfoethanamminium hydrogen sulfate ([Et3N-SO3H]HSO4) was synthesized, and characterized using FT-IR, 1H NMR, 13C NMR, and mass data. Then, its catalytic activity was examined for the preparation of triazolo[1,2-a]-indazole-triones and 2H-indazolo[2,1-b]phthalazine-triones by the one-pot multi-component condensation of arylaldehydes with dimedone and 4-phenylurazole/2,3-dihydrophthalazine-1,4-dione under solvent-free conditions. [Et3N-SO3H]HSO4 efficiently promoted the reaction to afford the products in high yields and in short reaction times.  相似文献   

14.
In situ lithiation of HN(o-C6H4PPh2)2 (H[ 1a ]) or HN(o-C6H4PiPr2)2 (H[ 1b ]) with nBuLi in THF at −35°C followed by addition of [Ir(μ-Cl)(COD)]2 (COD = 1,5-cyclooctadiene) in toluene at −35°C generates 5-coordinate [ 1a ]Ir(η4-COD) ( 2a ) or 4-coordinate [ 1b ]Ir(η2-COD) ( 2b ), respectively. Oxidative addition of N-H in H[ 1b ] to [Ir(μ-Cl)(COD)]2 affords square pyramidal [ 1b ]Ir(H)(Cl) ( 3b ). Metathetical reaction of 3b with LiBHEt3 in the presence of 1 atm of H2 in toluene produces [ 1b ]Ir(H)2 ( 4b ). Both 2a and 4b are active for catalytic hydrogenation of olefins and alkynes under extremely mild conditions.  相似文献   

15.
A series of zwitterionic aluminum complexes of the type AlX[(2‐O‐3,5‐tBu2C6H2)3PZ] (AlX [O3PZ]; X = Cl, Me, Et, and iBu; Z = H, Me) containing C3‐symmetric, formally dianionic, facially tridentate ligands [O3PZ]2? were prepared and structurally characterized. Although serendipitous, these complexes can be readily synthesized by partial protonolysis of AlX3 with equal molar (2‐HO‐3,5‐tBu2C6H2)3P (H3[O3P]) or [(2‐HO‐3,5‐tBu2C6H2)3p.m.e](OTf) ({H3[O3PMe]}OTf) in THF at 25°C or elevated temperatures. Alcoholysis of AlMe[O3PMe] ( 2 ) with an excess amount of MeOH in refluxing toluene generates AlOMe[O3PMe] ( 10 ). Salt metathesis of AlCl[O3PMe] ( 6 ) with nBuM (M = Li, MgCl) and NaOR (R = tBu, Ph) in ethereal solutions affords AlnBu[O3PMe] ( 9 ) and AlOR[O3PMe] (R = tBu ( 11 ), Ph ( 12 )), respectively. Reactivity of 10 , 11 , and 12 with respect to catalytic ring‐opening polymerization of ε‐caprolactone is assessed.  相似文献   

16.
Complex [Na(phen)3][Cu(NPh2)2] ( 2 ), containing a linear bis(N‐phenylanilide)copper(I) anion and a distorted octahedral tris(1,10‐phenanthroline)sodium counter cation, has been isolated from the catalytic C? N cross‐coupling reaction with the CuI/phen/tBuONa (phen=1,10‐phenanthroline) catalytic system. Complex 2 can react with 4‐iodotoluene to produce 4‐methyl‐N,N‐diphenylaniline ( 3 a ) with 70.6 % yield. In addition, 2 can work as an effective catalyst for C? N coupling under the same reaction conditions, thus indicating that 2 is the intermediate of the catalytic system. Both [Cu(NPh2)2]? and [Cu(NPh2)I]? have been observed by in situ electron ionization mass spectrometry (ESI‐MS) under catalytic reaction conditions, thus confirming that they are intermediates in the reaction. A catalytic cycle has been proposed based on these observations. The molecular structure of 2 has been determined by single‐crystal X‐ray diffraction analysis.  相似文献   

17.
The substitution behavior of the monodentate Cl ligand of a series of ruthenium(II) terpyridine complexes (terpyridine (tpy)=2,2′:6′,2′′-terpyridine) has been investigated. 1H NMR kinetic experiments of the dissociation of the chloro ligand in D2O for the complexes [Ru(tpy)(bpy)Cl]Cl ( 1 , bpy=2,2’-bipyridine) and [Ru(tpy)(dppz)Cl]Cl ( 2 , dppz=dipyrido[3,2-a:2′,3′-c]phenazine) as well as the binuclear complex [Ru(bpy)2(tpphz)Ru(tpy)Cl]Cl3 ( 3 b , tpphz=tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine) were conducted, showing increased stability of the chloride ligand for compounds 2 and 3 due to the extended π-system. Compounds 1 – 5 ( 4 =[Ru(tbbpy)2(tpphz)Ru(tpy)Cl](PF6)3, 5 =[Ru(bpy)2(tpphz)Ru(tpy)(C3H8OS)/(H2O)](PF6)3, tbbpy=4,4′-di-tert-butyl-2,2′-bipyridine) are tested for their ability to run water oxidation catalysis (WOC) using cerium(IV) as sacrificial oxidant. The WOC experiments suggest that the stability of monodentate (chloride) ligand strongly correlates to catalytic performance, which follows the trend 1 > 2 > 5 ≥ 3 > 4 . This is also substantiated by quantum chemical calculations, which indicate a stronger binding for the chloride ligand based on the extended π-systems in compounds 2 and 3 . Additionally, a theoretical model of the mechanism of the oxygen evolution of compounds 1 and 2 is presented; this suggests no differences in the elementary steps of the catalytic cycle within the bpy to the dppz complex, thus suggesting that differences in the catalytic performance are indeed based on ligand stability. Due to the presence of a photosensitizer and a catalytic unit, binuclear complexes 3 and 4 were tested for photocatalytic water oxidation. The bridging ligand architecture, however, inhibits the effective electron-transfer cascade that would allow photocatalysis to run efficiently. The findings of this study can elucidate critical factors in catalyst design.  相似文献   

18.
A conceptually new method for the catalytic electrophilic activation of aromatic carbonyl substrates, by utilizing donor–acceptor interactions between an electron‐deficient macrocyclic boronic ester host ( [2+2] BTH‐F ) and an aromatic carbonyl guest substrate, was realized. In the presence of a catalytic amount of [2+2] BTH‐F , dramatic acceleration of the nucleophilic addition of a ketene silyl acetal towards either electron‐rich aromatic aldehydes or ketones was achieved. Several control experiments confirmed that inclusion of the aromatic substrates within [2+2] BTH‐F , through efficient donor–acceptor interactions, is essential for the acceleration of the reaction.  相似文献   

19.
The efficient synthesis of novel spiro[indeno[1,2‐b]quinoxaline derivatives via the four‐component condensation of amines, ninhydrin, isatoic anhydride, and о‐phenylenediamine derivatives catalyzed by ( 3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) supported on γ‐Fe2O3 as novel heterogenous magnetic nanocatalyst was described. The novel nanocatalyst was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), vibrating sample magnetometry (VSM), Field Emission Scanning Electron Microscopy (FE‐SEM), and thermal analysis (TGA‐DTG). The nanoparticles covered by (3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) showed enhanced catalytic performance in the preparation of spiro[indeno[1,2‐b]quinoxaline derivatives in excellent yields. Moreover, this method showed several advantages such as mild conditions, high yields, easy work‐up, and being environmentally friendly. The catalyst can be easily separated from the reaction mixture by an external magnet, recycled, and reused several times without a noticeable decrease in catalytic activity.  相似文献   

20.
A series of new 2‐substituted 3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones 8 were synthesized via an aza‐Wittig reaction. Phosphoranylideneamino derivatives 6a or 6b reacted with 4‐chlorophenyl isocyanate to give carbodiimide derivatives 7a or 7b , respectively, which were further treated with amines or phenols to give compounds 8 in the presence of a catalytic amount of EtONa or K2CO3. The structure of 2‐(4‐chlorophenoxy)‐3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐one ( 8j ) was comfirmed by X‐ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号