首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the analytical Fick-Jacobs approximation formalism and extensive Brownian dynamics simulations we study particle transport through two-dimensional periodic channels with triangularly shaped walls. Directed motion is caused by the interplay of constant bias acting along the channel axis and a pressure-driven flow. In particular, we analyze the particle mobility and the effective diffusion coefficient. The mechanisms of entropic rectification is revealed in channels with a broken spatial reflection symmetry in presence of hydrodynamically enforced entropic trapping. Due to the combined action of the forcing and the pressure-driven flow field, efficient rectification with a drastically reduced diffusivity is achieved.  相似文献   

2.
杜刚  刘晓彦  夏志良  杨竞峰  韩汝琦 《中国物理 B》2010,19(5):57304-057304
Interface roughness strongly influences the performance of germanium metal--organic--semiconductor field effect transistors (MOSFETs). In this paper, a 2D full-band Monte Carlo simulator is used to study the impact of interface roughness scattering on electron and hole transport properties in long- and short- channel Ge MOSFETs inversion layers. The carrier effective mobility in the channel of Ge MOSFETs and the in non-equilibrium transport properties are investigated. Results show that both electron and hole mobility are strongly influenced by interface roughness scattering. The output curves for 50~nm channel-length double gate n and p Ge MOSFET show that the drive currents of n- and p-Ge MOSFETs have significant improvement compared with that of Si n- and p-MOSFETs with smooth interface between channel and gate dielectric. The $82\%$ and $96\%$ drive current enhancement are obtained for the n- and p-MOSFETs with the completely smooth interface. However, the enhancement decreases sharply with the increase of interface roughness. With the very rough interface, the drive currents of Ge MOSFETs are even less than that of Si MOSFETs. Moreover, the significant velocity overshoot also has been found in Ge MOSFETs.  相似文献   

3.
Three anomalous transport phenomena are theoretically predicted in a vibrational motor, where an additional temporally periodic signal plays analogous role of noise in a Brownian motor. By manipulating the amplitude of the additional periodic signal, absolute negative mobility, negative nonlinear mobility and differential negative mobility are observed. The parameter regimes for the abnormal transport behaviors are identified. Coexisting attractors are responsible for these anomalous transport phenomena.  相似文献   

4.
Pulsed metal organic chemical vapor deposition is introduced into the growth of In Ga N channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free In Ga N channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 × 1013cm-2is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cm2/V·s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that In Ga N channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional Ga N channel heterostructure. The gratifying results imply that In Ga N channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices.  相似文献   

5.
Transport of molecules across membrane channels is investigated theoretically using exactly solvable discrete stochastic site-binding models. It is shown that the interaction potential between molecules and the channel has a strong effect on translocation dynamics. The presence of attractive binding sites in the pore accelerates the particle current for small concentrations outside the membrane, while for large concentrations, surprisingly, repulsive binding sites yield the most optimal transport. In addition, the asymmetry of the interaction potential also strongly influences the channel transport. The mechanism underlying these phenomena is discussed using the details of particle dynamics at the binding sites.  相似文献   

6.
The motion of molecules across channels and pores is critically important for understanding mechanisms of many cellular processes. Here we investigate the mechanism of interactions in the molecular transport through nanopores by analyzing exactly solvable discrete stochastic models. According to this approach the channel transport is viewed as a set of chemical transitions between discrete states. It is shown that the strength and spatial distribution of molecule/channel interactions can strongly modify the particle current. Our analysis indicates that the most optimal transport is achieved when the binding sites are near the entrance or exit of the pore depending on the sign of interaction potential. In addition, the role of intermolecular interactions during the channel transport is studied, and it is argued that an increase in the flux can be observed for some optimal interaction strength. The mechanisms of these phenomena are discussed.  相似文献   

7.
Channel proteins that selectively conduct molecules across cell membranes often exhibit an asymmetric structure. By means of a stochastic model, we argue that channel asymmetry in the presence of nonequilibrium fluctuations, fueled by the cell's metabolism as observed recently, can dramatically influence the transport through such channels by a ratchetlike mechanism. For an aquaglyceroporin that conducts water and glycerol, we show that a previously determined asymmetric glycerol potential leads to enhanced inward transport of glycerol, but for unfavorably high glycerol concentrations also to enhanced outward transport that protects a cell against poisoning.  相似文献   

8.
Conductivity of electrons in a quasi-one-dimensional (Q1D) system over liquid helium in narrow channels with the parabolic profile of the potential well has been investigated at temperature T, from 0.4 to 1.8 K, for different driving electric fields and radius of channel curvature. The interval of linear electron densities varied from 2.18×103 up to 1.7×106 cm−1.

The inverse mobility (1/μeff) in the electron-ripplon scattering region at the high linear densities of charges in the channel increases with temperature decreasing. This anomalous behavior of the electron transport in the low-temperature region has been explained by either the electron ordering or the polaronic effects in confined conducting channels. The nonlinear behavior of the electron velocity as a function of a driving electric field is supposed to be due to Breg–Cherenkov radiation of the ripplons. The radiation occurred if the velocity of electrons in the channel approaches to the critical value.  相似文献   


9.
Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water confined in carbon nanochannels with circular, square, and equilateral triangular cross sections over a variety of dimensions. We find that water exhibits disparate mobilities across different types of channels below 0.796 nm2. Notably, compared with the other two channels, water in equilateral triangular channels displays the greatest mobilities. Moreover, at 0.425 nm2, different ordered structures are found in the three channels, and water inside the square channel exhibits an extremely low mobility. It is also found that above 0.796 nm2, the mobilities along the tube axis of water converge to that of the bulk. These phenomena are understood by analyzing the structure, dynamics, and hydrogen bonding of water. Our work explores the mobilities of water across noncircular carbon nanochannels, which may expand the prospect of noncircular nanochannels in scientific studies and practical applications, such as desalination and drug delivery.  相似文献   

10.
We have measured the permeability of rhodamine-6G across Cx43 hemichannels reconstituted on a pipette tip. Cx43 hemichannels were overexpressed in Sf9 cells, and affinity-purified. The hemichannels were reconstituted in a lipid bilayer on a pipette tip by the tip-dip method. R6G in the pipette permeated across the channels into the bath. The permeability of R6G was quantified by measuring R6G concentration in the bath after several hours by surface enhanced Raman spectroscopy (SERS) with 100 nm silver colloid particles. The ratio of the permeability of dye to salt, as extracted by this combined electrical-SERS technique, is compatible with similar ratios for other dyes across whole gap junction channels. The results for the permeability ratio were further compared to fluorescence measurements. The novel combination of patch and SERS techniques can be extended to quantifying the transport of biologically significant non-fluorescent molecules, such as cAMP and IP3, across 1 nm sized pores, such as the gap junction channel.  相似文献   

11.
The electron-hole transport in poly(diphenylene phthalide) films has been investigated. The dependence of the drift mobility of charge carriers on the excessive mechanical pressure has been studied using the time-of-flight method. It has been revealed that, with an increase in the thickness of the polymer film, the dispersive transport of charge carries gives way to the quasi-dispersive transport. In thin films in the prethreshold range (i.e., before switching of the samples to the highly conductive state under excessive pressure), the electron mobility increases and exceeds the hole mobility. The experimental results have been discussed in the framework of the model describing the transport through the channels formed by metastable electron-hole pairs.  相似文献   

12.
Molecular transport across biological membranes occurs in a range of important chemical and biological processes. The biological membrane can usually be modelled as a phospholipid bilayer, but to correctly represent biological transport, the embedded transmembrane proteins must also be included. In previous molecular simulation studies on transport of small gas molecules in dipalmitoylphosphatidylcholine (DPPC) bilayer membrane, a coarse-grained model was used to provide direct insight into collective phenomena in biological membranes. Coarse graining allowed investigation of longer time and length scales by reducing the degrees of freedom and employing suitable potentials. In this work, membranes that include transmembrane proteins are modelled. This allows one to compare the molecular transport across a lipid membrane with and without the assistance of transmembrane channels. Outer membrane protein A (OmpA) – a porin from Escherichia coli with a small pore size – was chosen in this study because its detailed structure is known, it has high stability and is known to form a nonspecific diffusion channel that permits the penetration of various solutes. In this work the pore characteristics and interaction between lipid and protein were investigated and transport of water and other small gas molecules within the channel were studied. The MD simulation results obtained are compared with previous simulation results and available experimental data. The results obtained from this study will lead to better understanding of protein functionality and advance the development of biochips and drug delivery systems.  相似文献   

13.
Dual channel transistor structures utilizing real-space-transfer (RST) offer the potential for fast switching and negative differential resistance. We have built a two channel heterostructure field effect transistor (FET) incorporating a modulation doped 2-dimensional electron gas (2DEG) and a thin channel of low-temperature-grown GaAs containing As precipitates. The low mobility characteristic of low-temperature-grown GaAs provides a large mobility ratio, which is a prerequisite for a high speed, mobility modulation transistor utilizing RST.A series of dual channel FET structures with different channel lengths has been fabricated and characterized by capacitance-gate voltage, transconductance, and current-voltage measurement. These measurements, performed over a 77-300K temperature range, confirm the presence of two distinct channels separated by a 6nm AlAs layer, Carrier concentration versus depth was determined using a layer-by-layer depletion approximation. Mobility as a function of depth was then calculated using transconductance. A 2DEG/low-temperature-grown GaAs channel mobility ratio of 41 was measured at 77K.  相似文献   

14.
Spatial soliton switching in quasi-continuous optical arrays   总被引:2,自引:0,他引:2  
We report on the phenomenon of trapping and switching of one-dimensional spatial solitons in Kerr-type nonlinear media with transverse periodic modulation of the refractive index. The solitons slowly radiate upon propagation along the periodic structure and are finally trapped in one of its guiding channels. The position of the output channel can be varied by small changes in the launching angle.  相似文献   

15.
周期性渐扩-渐缩通道层流流动与换热特性研究   总被引:1,自引:1,他引:0  
以渐扩-渐缩通道内周期性充分发展的层流流动与换热为研究对象,采用SIMPLE算法,适体坐标网格及Amano周期性边界条件的实施方案对之进行数值模拟,计算了在层流范围内不同Re数下的流动与换热规律.结果表明,在Re=100~1000范围内,与平行平板通道相比,阻力增强了(10~200)%,换热增强了(40~320)%.  相似文献   

16.
We report transport properties of a 2 dimension electron gas (2DEG) in molecular beam epitaxy-grown GaAs1−xNx/AlGaAs modulation-doped heterostructures. Quantum oscillations in far infrared cyclotron resonance prove the efficient electron transfer and formation of the 2DEG. The 2DEG mobility strongly depends on the N concentration in the channel layer. It shows a drastic decrease as compared to N-free samples, even for the smallest amount of N (0.02%). For this N composition, the electron effective mass was found to be 0.073m0. Reduced growth temperature (450 °C) was found to improve the mobility of N-containing channels. Examination of transport properties from 4 to 300 K and cyclotron resonance experiments give evidence of the presence of ionised impurity-like scattering centres in GaAsN.  相似文献   

17.
The phenomena of negative mobility (NM) and multiple current reversals (MCR) are investigated numerically in an asymmetric periodic potential with a Gaussian colored noise under the influence of a periodic driving and a constant bias. Two cases have been considered: the case of noise-induced normal transport and the case of noise-induced anomalous transport. The results indicate: (1) within tailored parameter regimes, a robust and wide range of NM can be obtained for a fixed regime of correlation time; (2) nonzero correlation time can induce and diminish MCR; (3) the asymmetry can induce and significantly facilitate the anomalous transport of inertial Brownian particle.  相似文献   

18.
王荣  吴莹  刘少宝 《物理学报》2013,62(22):220504-220504
神经元细胞膜上的离子通道能够被一些有毒的化学物质阻断. 离子通道阻断会降低离子通道的电导率和激活通道数, 影响神经元的放电活动, 进而影响神经网络时空模式的动力学行为. 本文采用具有周期边界的近邻耦合Hodgkin-Huxley神经元网络, 数值研究了钠离子和钾离子通道随机中毒时神经网络时空模式的演化过程. 发现钠离子和钾离子通道随机中毒可以导致螺旋波破裂. 通过分析网络的放电概率, 发现钠离子通道随机中毒降低了神经网络的兴奋性, 且其对中毒的敏感程度与噪声强度有关; 钾离子通道随机中毒增强了神经网络的兴奋性. 与均匀的通道中毒相比, 随机通道中毒的神经网络具有更丰富的动力学行为. 最后, 采用无流边界条件对神经网络进行数值仿真, 得到了类似的结果. 该研究更真实地反映神经系统中毒时整体兴奋性的变化, 从另一个方面揭示离子通道中毒对网络时空行为的影响, 有利于更进一步理解离子通道在网络整体行为中的作用. 关键词: 神经网络 离子通道 随机中毒 时空动力学  相似文献   

19.
20.
Shaping soliton properties in Mathieu lattices   总被引:2,自引:0,他引:2  
We address basic properties and stability of two-dimensional solitons in photonic lattices induced by the nondiffracting Mathieu beams. Such lattices allow for smooth topological transformation of radially symmetric Bessel lattices into quasi-one-dimensional periodic ones. The transformation of lattice topology drastically affects the properties of ground-state and dipole-mode solitons, including their shape, stability, and transverse mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号