首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method permitting to produce regular spikes from a free running neodymium YAG laser is described. By using a Pockels cell, driven by a linear voltage ramp, the hole burning effects are suppressed and a train of regular pulses of 400 ns duration with a repetition rate of more than 100 kHz is obtained. The pulse peak power at the second harmonic reaches several kilowatts.  相似文献   

2.
A laser diode end-pumped 10 at.% doped Yb:YAG microchip crystal intracavity frequency doubled all solid-stated green laser is reported in this paper. Using one plano-concave resonator, with the pump power of 1.2 W, 44.2 mW TEM00 continuous wave (CW) laser at 525 nm was obtained, the optical conversion efficiency was about 3.7%. When a Cr:YAG crystal with initial transmission of 95.5% inserted in the resonator, the maximum output power of 6.4 mW, pulse duration width of 49.1 ns, pulse repetition rate of 2.45 kHz, and peak power of 53.1 W at 515 nm were achieved when the pump power was 1.2 W. The wavelength changed from 525 nm to 515 nm and the threshold was only 725 mW.  相似文献   

3.
A LD-pumped, LBO intracavity frequency doubled and Cr:YAG passively Q-switched Nd:YAG green laser was reported in this letter. With 600 mW incident pump laser, Q-switched green laser with average power of 27 mW, pulse width of 15.2 ns, repetition rate of 16.4 kHz and peak power of 108.1 W was obtained.  相似文献   

4.
Using the frequency doubled output of the 3 ps pulses from a temporally compressed cw Q-switched and mode-locked Nd:YAG laser, a simple synchronously pumped dye laser was constructed to give frequency tunable operation with short pulses in the 5–10 ps range and peak powers of ~ 15 kW. A circularly scanning streak camera operating in stroboscopic mode was also used to examine pulse formation in the dye laser.  相似文献   

5.
In a thermally birefringence-compensated linear cavity configuration, ~160 W of average green power by intracavity frequency doubling of AO Q-switched Nd:YAG/LBO-based laser is demonstrated. The corresponding optical to optical conversion efficiency is estimated to be ~ 12.7%. The pulse repetition rate is 20 kHz with the individual pulse duration of 73 ns. The beam quality parameter is measured to be 18.  相似文献   

6.
We analyzed a linear cavity for intracavity frequency doubling of a diode-pumped acousto-optic Q-switched Nd:YAG rod laser, and showed that a green laser beam with a short pulse width can be generated efficiently. A green laser output power of 73 W corresponding to the 83.9% of maximum IR output power was obtained with a 40 ns pulse width at a 10 kHz repetition rate. A green output power of 40 W with a 35 ns pulse width was measured at a 5 kHz repetition rate. Minimum laser pulse width of approximately 32 ns was obtained around 1 kHz repetition rate for both green and IR laser beams.  相似文献   

7.
A novel and rapid laser ablation method for the fabrication of diffractive optical elements (DOE) in ZnSe that takes advantage of the relatively low intensity damage threshold of the material is presented. The structures were characterized in terms of their shape and diffraction efficiency at normal incidence under 10.6 μm radiation for TE and TM polarizations. Sample surface polishing as well as the possible effect of the melted zone and structural modification of the material around the ablated region on the power transmission capability of the grating are also discussed.  相似文献   

8.
9.
Spectral tuning of the uv output of a frequency doubled dye laser has been successfully controlled by a servo motor system which tilts the nonlinear crystal appropriate for phase-matched second harmonic generation while the dye laser emission wavelength is tuned. The spatial direction of the generated uv beam is used as the regulating signal. The feasibility of this technique for spectroscopic applications has been successfully tested.  相似文献   

10.
The output of a chemical oxygen iodine laser (=1.315 m) has been frequency doubled at an overall conversion efficiency of 1%. A lithium iodate (LiIO3) crystal was used in an intracavity doubling scheme. This represents the first time visible laser light has been obtained, solely from a chemical source.To whom the correspondence should be addressed.  相似文献   

11.
In this paper, a coupled-cavity Er-doped fiber laser is experimentally developed and analyzed. The proposed scheme has the advantage of an all-fiber configuration. Two similar fiber Bragg gratings are employed as reflective components of the main cavity containing the gain medium. The second cavity is generated, in one side, by the reflective flat end of a standard fiber optic pigtail of variable length and, in the other, by one of the Bragg gratings belonging to the main cavity. Depending on the ratio between the lengths of both cavities, trains of stable and short pulses were obtained with a repetition frequency larger than the frequency of the main cavity. The repetition rate of the pulse trains experimentally obtained was as high as 780 MHz (15 times the main cavity frequency) and the pulse width was ∼110 ps. Prediction of the possible repetition rates for each cavities lengths ratio and the upgrading possibilities of this laser system are analyzed.  相似文献   

12.
A compact diode-end-pumped passively Q-switched intra-cavity frequency doubled Nd:YAG/Cr4+:YAG composite crystal laser was demonstrated. The pulsed laser at 532 nm was produced and the dependence of the average out power, pulse width and pulse repetition rate on incident pump power were measured. Under the pump power of 14 W, the minimum pulse width of 3.5 ns with repetition rate of 27.5 kHz was obtained, corresponding single-pulse energy of 18 μJ and peak power of 5.3 kW.  相似文献   

13.
通过合理设计以及精密调控各元件和温控电流,得到了平均功率为27mW、脉冲宽度为15ns、重复频率为16kHz、峰值功率高达108W的Cr4+∶YAG/Nd∶YAG/LBO绿光脉冲激光器。在腔外用I类临界相位匹配的BBO作为四倍频晶体,得到了平均功率为1 2mW的266nm紫外激光,并分析了椭圆光斑产生的原因。  相似文献   

14.
报道了LD侧面泵浦Nd∶YAG/S-KTP腔内倍频高功率660nm连续红光激光器。泵浦组件(呈三角形等间距分布)由9个20W的激光二极管组成,最大泵浦功率为180W。通过对谐振腔参数进行优化设计,用LD连续抽运3mm×65mm Nd∶YAG激光棒时,获得了波长为1319nm的基频光振荡。利用S-KTP II类临界相位匹配腔内倍频技术,当泵浦电流为22A时,获得了6.8W的连续红光激光输出,光-光转换效率为4.3%。  相似文献   

15.
We demonstrate a passively mode-locked thin-disk Yb:YAG laser that generates solitonlike pulses with durations that are continuously tunable in a very wide range from 3.3 to 89 ps or from 0.83 to 1.57 ps. The average powers are typically ~12 W . Previously [Opt. Lett. 25, 859 (2000)], only pulse durations in a narrow range near 0.7 ps could be obtained from such lasers because of the effect of spatial hole burning. We achieved this much wider range by constructing a laser cavity with two different angles of incidence on the thin disk, which greatly reduces the effect of spatial hole burning.  相似文献   

16.
从双包层光纤激光器的速率方程和光传输方程出发,建立数学模型,进行数值计算并对掺钕光纤激光器输出功率沿光纤的分布以及不同光纤长度下抽运功率和输出功率沿光纤的分布进行了数值模拟。以808nm半导体激光器为抽运源,掺钕双包层光纤为增益介质,并以KTP作为倍频晶体,计算并模拟其倍频效率和相位匹配角。最后,对光纤激光器及其倍频的实现进行了模拟研究。结果表明,该光纤激光器能够高效率地实现可见光输出。  相似文献   

17.
A design of diode-pumped high-efficiency Nd:YVO4/LBO red laser is reported. Using critical phase-matching (CPM) LBO, 671 nm red laser was obtained from 1342 nm light by intracavity frequency doubling. With an incident pump laser of 800 mW, using type-I and type-II CPM LBO, 97 and 52 mWTEM00 mode red laser outputs were obtained, with optical-to-optical conversion efficiencies of up to 12.1% and 6.5%, respectively.  相似文献   

18.
Additive pulse mode locking applied to lamppumped Nd: YAG lasers results in an attractive source of picosecond pulses at 1.06 m or 1.32 m with average powers at the Watt level. We provide detailed information on construction and operation and give data on performance. A modified active stabilization scheme allows not only improved stability of operation but also insight into the dynamics of pulse formation.  相似文献   

19.
20.
We report a stable high power and high beam quality diode-side-pumped CW green laser from intracavity frequency doubled Nd:YAG laser with LBO crystal. By using a advanced resonator, a large fundamental mode size in the laser crystal and a tight focus in the nonlinear crystal could be obtained simultaneously, which are favorable for high power and high beam quality CW green laser generation. The green laser delivered a maximum 532 nm output power of 40 W. The corresponding optical-to-optical conversion efficiency and electrical-to-optical conversion efficiency were 8.6% and 5.0%, respectively. Under 532 nm output power of 34 W, the beam quality factor was measured to be 1.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号