首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
He Y  Yeung ES 《Electrophoresis》2003,24(1-2):101-108
Protein kinases play a major role in the transformation of cells and are often used as molecular targets for the new generation of anticancer drugs. We present a novel technique for high-throughput screening of inhibitors of protein kinases. The technique involves the use of multiplexed capillary electrophoresis (CE) for the rapid separation of the peptides, phosphopeptides, and various inhibitors. By means of UV detection, diversified peptides with native amino acid sequences and their phosphorylated counterparts can be directly analyzed without the need for radioactive or fluorescence labeling. The effects of different inhibitors and their IC(50) value were determined using three different situations involving the use of a single purified kinase, two purified kinases, and crude cell extracts, respectively. The results suggest that multiplexed CE/UV may prove to be a straightforward and general approach for high-throughput screening of compound libraries to find potent and selective inhibitors of the various protein kinases.  相似文献   

2.
Selective protein kinase inhibitors have only been developed against a small number of kinase targets. Here we demonstrate that "high-throughput kinase profiling" is an efficient method for the discovery of lead compounds for established as well as unexplored kinase targets. We screened a library of 118 compounds constituting two distinct scaffolds (furan-thiazolidinediones and pyrimido-diazepines) against a panel of 353 kinases. A distinct kinase selectivity profile was observed for each scaffold. Selective inhibitors were identified with submicromolar cellular activity against PIM1, ERK5, ACK1, MPS1, PLK1-3, and Aurora A,B kinases. In addition, we identified potent inhibitors for so far unexplored kinases such as DRAK1, HIPK2, and DCAMKL1 that await further evaluation. This inhibitor-centric approach permits comprehensive assessment of a scaffold of interest and represents an efficient and general strategy for identifying new selective kinase inhibitors.  相似文献   

3.
BACKGROUND: The proteasome is a large multicatalytic protease complex (700 kDa) involved in a number of highly regulated processes. It has three major catalytic activities: a chymotrypsin-like activity, a trypsin-like activity and a post-glutamyl peptide hydrolyzing (PGPH) activity. To be useful as molecular probes, which could help dissect the cellular functions of the proteasome, inhibitors should be specific for the proteasome, active in vivo and selectively block only one of the three catalytic activities. To date, few inhibitors fulfill these requirements so we set out to make novel proteasome inhibitors that incorporate these characteristics. RESULTS: A panel of amino-terminally acetylated peptide alpha',beta'-epoxyketones with leucine in P1 and various aliphatic or aromatic amino acids in P2-P4 were prepared and evaluated. Most compounds selectively inhibited the chymotrypsin-like activity, while only weakly inhibiting the trypsin-like and PGPH activities. After optimization, one inhibitor, Ac-hFLFL-epoxide, was found to be more potent and selective for the inhibition of the chymotrypsin-like activity than several previously described inhibitors. This inhibitor also exhibited strong in vivo anti-inflammatory activity. CONCLUSIONS: Optimization of amino-terminally acetylated peptide alpha',beta'-epoxyketones furnished a potent proteasome inhibitor, Ac-hFLFL-epoxide, that has an excellent selectivity for the chymotrypsin-like activity. The inhibitor also proved to be a potent antiproliferative and anti-inflammatory agent. The strong in vivo and in vitro activities suggest that this class of proteasome inhibitors could be both molecular probes and therapeutic agents.  相似文献   

4.
Protein arginine deiminases (PADs) hydrolyze the side chain of arginine to form citrulline. Aberrant PAD activity is associated with rheumatoid arthritis, multiple sclerosis, lupus, and certain cancers. These pathologies established the PADs as therapeutic targets and multiple PAD inhibitors are known. Herein, we describe the first highly potent PAD1‐selective inhibitors ( 1 and 19 ). Detailed structure–activity relationships indicate that their potency and selectivity is due to the formation of a halogen bond with PAD1. Importantly, these inhibitors inhibit histone H3 citrullination in HEK293TPAD1 cells and mouse zygotes with excellent potency. Based on this scaffold, we also developed a PAD1‐selective activity‐based probe that shows remarkable cellular efficacy and proteome selectivity. Based on their potency and selectivity we expect that 1 and 19 will be widely used chemical tools to understand PAD1 biology.  相似文献   

5.
The COVID-19 pandemic has led to the search for new molecules with antiviral activity against SARS-CoV-2. The entry of the virus into the cell is one of the main targets for inhibiting SARS-CoV-2 infection. Natural products are an important source of new therapeutic alternatives against diseases. Pseudotyped viruses allow the study of SARS-CoV-2 viral entry inhibitors, and due to their simplicity, they allow the screening of a large number of antiviral candidates in Biosafety Level 2 facilities. We used pseudotyped HIV-1 with the D614G SARS-CoV-2 spike glycoprotein to test its ability to infect ACE2-expressing HEK 293T cells in the presence of diverse natural products, including 21 plant extracts, 7 essential oils, and 13 compounds from plants and fungi. The 50% cytotoxic concentration (CC50) was evaluated using the resazurin method. From these analyses, we determined the inhibitory activity of the extract of Stachytarpheta cayennensis, which had a half-maximal inhibitory concentration (IC50) of 91.65 µg/mL, a CC50 of 693.5 µg/mL, and a selectivity index (SI) of 7.57, indicating its potential use as an inhibitor of SARS-CoV-2 entry. Moreover, our work indicates the usefulness of the pseudotyped-virus system in the screening of SARS-CoV-2 entry inhibitors.  相似文献   

6.
Identification of small-molecule targets remains an important challenge for chemical genetics. We report an approach for target identification and protein discovery based on functional suppression of chemical inhibition in vitro. We discovered pirl1, an inhibitor of actin assembly, in a screen conducted with cytoplasmic extracts. Pirl1 was used to partially inhibit actin assembly in the same assay, and concentrated biochemical fractions of cytoplasmic extracts were added to find activities that suppressed pirl1 inhibition. Two activities were detected, separately purified, and identified as Arp2/3 complex and Cdc42/RhoGDI complex, both known regulators of actin assembly. We show that pirl1 directly inhibits activation of Cdc42/RhoGDI, but that Arp2/3 complex represents a downstream suppressor. This work introduces a general method for using low-micromolar chemical inhibitors to identify both inhibitor targets and other components of a signaling pathway.  相似文献   

7.
The chemical diversity of nature has tremendous potential for the discovery of molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, and macro- and microorganisms has curtailed their use in lead discovery. Here, we describe a process for leveraging the concentration-response curves obtained from quantitative HTS to improve the initial selection of "actives" from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm improves the probability that labor-intensive subsequent steps of reculturing, extraction, and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by X-ray crystallography.  相似文献   

8.
Matrix metalloproteinases (MMPs) are involved in a multitude of severe diseases. Despite MMPs being considered druggable targets, past drug-discovery programs have not delivered the anticipated clinical benefits. This review examines the latest structural evolution of small-molecule inhibitors of MMPs, with a focus on the development of novel chemical entities with improved affinity and selectivity profiles. X-ray crystallographic data of the protein targets and cocrystal structures with inhibitors proved to be key for the success achieved during this ambitious endeavor. An evolutionary view on the structural diversity generated for this class of molecules is provided. This encouraging development paves the way for the clinical utilization of this class of highly relevant therapeutic targets. The structure-based design of superior MMP inhibitors highlights the power of this technique and displays strategies for the development of treatment options based on the modulation of challenging drug targets.  相似文献   

9.
Casein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms. At proper concentrations, MU1250 and MU1500 allow for specific targeting of CK1δ or dual inhibition of CK1δ/ϵ in cells. The compound MU1742 also efficiently inhibits CK1α and, to our knowledge, represents the first potent and highly selective inhibitor of this enzyme. In addition, we demonstrate that the central 1H-pyrrolo[2,3-b]pyridine-imidazole pharmacophore can be used as the basis of highly selective inhibitors of other therapeutically relevant protein kinases, e.g. p38α, as exemplified by the compound MU1299.  相似文献   

10.
The synthesis of tailored bioactive carbohydrates usually comprises challenging (de)protection steps, which lowers synthetic yields and increases time demands. We present here a regioselective single-step introduction of benzylic substituents at 3-hydroxy groups of β-d -galactopyranosyl-(1→1)-thio-β-d -galactopyranoside (TDG) employing dibutyltin oxide in good yields. These glycomimetics act as inhibitors of galectins—human lectins, which are biomedically attractive targets for therapeutic inhibition in, for example, cancerogenesis. The affinity of the prepared glycomimetics to galectin-1 and galectin-3 was studied in enzyme-linked immunosorbent (ELISA)-type assays and their potential to inhibit galectin binding on the cell surface was shown. We used our original in vivo biotinylated galectin constructs for easy detection by flow cytometry. The results of the biological experiments were compared with data from molecular modeling with both galectins. The present work reveals a facile and elegant synthetic route for the preparation of TDG-derived glycomimetics that exhibit differing selectivity and affinity to galectins depending on the choice of 3-O-substitution.  相似文献   

11.
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.  相似文献   

12.
A major problem hampering the use of MALDI-MS for quantitative measurements is the inhomogeneous distribution of analytes and matrices in sample preparations. In this study, an aerospray method was utilized for sample preparation method to improve sample homogeneity across stainless steel targets for quantitative analysis of quaternary ammonium alkaloids (QAAs). A selective precipitation reaction with Reinecke salt known to selectively trap QAAs was used to facilitate the separation and purification of QAAs from the complex crude plant extracts. Palmatine and berberine as the representative QAAs in commercial Rhizoma Corydalis were successfully quantified by introducing an internal standard with similar molecular properties as analytes. The LODs were found to be 0.07 fmol, for palmatine, and 0.24 fmol, respectively, for berberine. The content of QAAs of three commercial Rhizoma Corydalis was between 0.201 and 0.245% for palmatine, and 0.049-0.057% for berberine. Furthermore, MS/MS experiments based on the accurate-mass measurements were carried out by infrared multiphoton dissociation (IRMPD) for QAAs and the corresponding tertiary alkaloids, which offered additional selectivity for this quantitative analysis method. In the fragmentation of precursor ions from QAAs, only cleavage of substituted groups attached to the A- or D-ring was observed, while cleavage between B- and C-ring from tertiary alkaloids had occurred. This study offers a perspective into the utility of MALDI-FTMS as an alternate quantitative tool for QAAs, especially in complex plant extracts.  相似文献   

13.
Neuraminidase is an important target in the treatment of the influenza A virus. Screening natural neuraminidase inhibitors from medicinal plants is crucial for drug research. This study proposed a rapid strategy for identifying neuraminidase inhibitors from different crude extracts (Polygonum cuspidatum, Cortex Fraxini, and Herba Siegesbeckiae) using ultrafiltration combined with mass spectrometry guided by molecular docking. Firstly, the main component library of the three herbs was established, followed by molecular docking between the components and neuraminidase. Only the crude extracts with numbers of potential neuraminidase inhibitors identified by molecular docking were selected for ultrafiltration. This guided approach reduced experimental blindness and improved efficiency. The results of molecular docking indicated that the compounds in Polygonum cuspidatum demonstrated good binding affinity with neuraminidase. Subsequently, ultrafiltration-mass spectrometry was employed to screen for neuraminidase inhibitors in Polygonum cuspidatum. A total of five compounds were fished out, and they were identified as trans-polydatin, cis-polydatin, emodin-1-O-β-D-glucoside, emodin-8-O-β-D-glucoside, and emodin. The enzyme inhibitory assay showed that they all had neuraminidase inhibitory effects. In addition, the key residues of the interaction between neuraminidase and fished compounds were predicted. In all, this study could provide a strategy for the rapid screening of the potential enzyme inhibitors from medicinal herbs.  相似文献   

14.
张艳梅  康经武 《色谱》2013,31(7):640-645
发展了毛细管电泳(CE)和高效液相色谱-质谱(HPLC-MS)相结合的用于天然产物中活性成分筛选和鉴定的方法。该方法中,用HPLC半制备柱对天然产物粗提物进行分离纯化,再用CE对HPLC纯化后的组分进行活性测试。根据HPLC-MS/MS提供的二级质谱数据,即可确定活性成分的化学结构。以乙酰胆碱酯酶为实验模型,对我们发展的筛选方法进行了验证。从黄连粗提物中确定了药根碱、巴马汀等7种活性成分,并通过CE测定了它们的半抑制率(IC50)值。与传统的天然产物分离纯化和活性筛选方法相比,该方法具有简单、微量、快速、准确的优点。本文建立的方法为天然产物粗提物中活性成分的筛选提供了新技术。  相似文献   

15.
Histone deacetylase enzymes (HDACs) are potential targets for the treatment of cancer and other diseases, but it is challenging to design isoform-selective agents. In this work, we created new analogs of two established but non-selective HDAC inhibitors. We decorated the central linker chains of the molecules with specifically positioned fluorine atoms in order to control the molecular conformations. The fluorinated analogs were screened against a panel of 11 HDAC isoforms, and minor differences in isoform selectivity patterns were observed.  相似文献   

16.
The development of small-molecule inhibitors for perturbing enzyme function requires assays to confirm that the inhibitors interact with their enzymatic targets in vivo. Determining target engagement in vivo can be particularly challenging for poorly characterized enzymes that lack known biomarkers (e.g., endogenous substrates and products) to report on their inhibition. Here, we describe a competitive activity-based protein profiling (ABPP) method for measuring the binding of reversible inhibitors to enzymes in animal models. Key to the success of this approach is the use of activity-based probes that show tempered rates of reactivity with enzymes, such that competition for target engagement with reversible inhibitors can be measured in vivo. We apply the competitive ABPP strategy to evaluate a newly described class of piperazine amide reversible inhibitors for the serine hydrolases LYPLA1 and LYPLA2, two enzymes for which selective, in vivo active inhibitors are lacking. Competitive ABPP identified individual piperazine amides that selectively inhibit LYPLA1 or LYPLA2 in mice. In summary, competitive ABPP adapted to operate with moderately reactive probes can assess the target engagement of reversible inhibitors in animal models to facilitate the discovery of small-molecule probes for characterizing enzyme function in vivo.  相似文献   

17.
The sirtuins are NAD+-dependent lysine deacylases, comprising seven isoforms (SIRT1–7) in humans, which are involved in the regulation of a plethora of biological processes, including gene expression and metabolism. The sirtuins share a common hydrolytic mechanism but display preferences for different ϵ-N-acyllysine substrates. SIRT7 deacetylates targets in nuclei and nucleoli but remains one of the lesser studied of the seven isoforms, in part due to a lack of chemical tools to specifically probe SIRT7 activity. Here we expressed SIRT7 and, using small-angle X-ray scattering, reveal SIRT7 to be a monomeric enzyme with a low degree of globular flexibility in solution. We developed a fluorogenic assay for investigation of the substrate preferences of SIRT7 and to evaluate compounds that modulate its activity. We report several mechanism-based SIRT7 inhibitors as well as de novo cyclic peptide inhibitors selected from mRNA-display library screening that exhibit selectivity for SIRT7 over other sirtuin isoforms, stabilize SIRT7 in cells, and cause an increase in the acetylation of H3 K18.  相似文献   

18.
The human nucleotide excision repair system targets a wide variety of DNA adducts for removal from DNA, including photoproducts induced by UV wavelengths of sunlight. A key feature of nucleotide excision repair is its dual incision mechanism, which results in generation of a small, damage‐containing oligonucleotide approximately 24 to 32 nt in length. Detection of these excised oligonucleotides using cell‐free extracts and purified proteins with defined DNA substrates has provided a robust biochemical assay for excision repair activity in vitro. However, the relevance of a number of in vitro findings to excision repair in living cells in vivo has remained unresolved. Over the past few years, novel methods for detecting and isolating the excised oligonucleotide products of repair in vivo have therefore been developed. Here we provide a basic outline of a sensitive and versatile in vivo excision assay and discuss how the assay both confirms previous in vitro findings and offers a number of advantages over existing cell‐based DNA repair assays. Thus, the in vivo excision assay offers a powerful tool for readily monitoring the repair of DNA lesions induced by a large number of environmental carcinogens and anticancer compounds.  相似文献   

19.
Classification, assessment, and utilization of coal and crude oil extracts are enhanced by analysis of their oxygen content. Values of oxygen obtained "by difference" from chemical analysis have proved inaccurate. The oxygen, nitrogen, and silicon content of Nigerian coal samples, crude oils, bitumen extracts, and tar sand samples were measured directly using instrumental fast neutron activation analysis (FNAA). The total oxygen in the coal ranges from 5.20% to 23.3%, in the oil and extracts from 0.14% to 1.08%, and in the tar sands from 38% to 47%. The nitrogen content in the coal ranges from 0.54% to 1.35%, in the crude oil and bitumen extracts from ; 0.014% to 0.490%, and in the tar sands from 0.082% to 0.611%. The silicon content in the coal ranges from 1.50% to 8.86%; in the oil and the bitumen extracts it is <1%, and in the tar sands between 25.1% and 37.5%. The results show that Nigerian coals are mostly sub-bituminous. However, one of the samples showed bituminous properties as evidenced by the dry ash-free (daf) percent of carbon obtained. This same sample indicated a higher ash content resulting in a comparatively high percentage of silicon. In oils and tar sands from various locations, a comparison of elements is made.  相似文献   

20.
BACKGROUND: The rapidly expanding list of pharmacologically important targets has highlighted the need for ways to discover new inhibitors that are independent of functional assays. We have utilized peptides to detect inhibitors of protein function. We hypothesized that most peptide ligands identified by phage display would bind to regions of biological interaction in target proteins and that these peptides could be used as sensitive probes for detecting low molecular weight inhibitors that bind to these sites. RESULTS: We selected a broad range of enzymes as targets for phage display and isolated a series of peptides that bound specifically to each target. Peptide ligands for each target contained similar amino acid sequences and competition analysis indicated that they bound one or two sites per target. Of 17 peptides tested, 13 were found to be specific inhibitors of enzyme function. Finally, we used two peptides specific for Haemophilus influenzae tyrosyl-tRNA synthetase to show that a simple binding assay can be used to detect small-molecule inhibitors with potencies in the micromolar to nanomolar range. CONCLUSIONS: Peptidic surrogate ligands identified using phage display are preferentially targeted to a limited number of sites that inhibit enzyme function. These peptides can be utilized in a binding assay as a rapid and sensitive method to detect small-molecule inhibitors of target protein function. The binding assay can be used with a variety of detection systems and is readily adaptable to automation, making this platform ideal for high-throughput screening of compound libraries for drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号