首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present first elements of kinetic theory appropriate to the inhomogeneous phase of the Hamiltonian Mean Field (HMF) model. In particular, we investigate the case of strongly inhomogeneous distributions for T→0 and exhibit curious behaviour of the force auto-correlation function and friction coefficient. The temporal correlation function of the force has an oscillatory behaviour which averages to zero over a period. By contrast, the effects of friction accumulate with time and the friction coefficient does not satisfy the Einstein relation. On the contrary, it presents the peculiarity to increase linearly with time. Motivated by this result, we provide analytical solutions of a simplified kinetic equation with a time dependent friction. Analogies with self-gravitating systems and other systems with long-range interactions are also mentioned.  相似文献   

2.
We study the relaxation of a test particle immersed in a bath of field particles interacting via weak long-range forces. To order 1/N in the N→+∞ limit, the velocity distribution of the test particle satisfies a Fokker-Planck equation whose form is related to the Landau and Lenard-Balescu equations in plasma physics. We provide explicit expressions for the diffusion coefficient and friction force in the case where the velocity distribution of the field particles is isotropic. We consider (i) various dimensions of space d=3,2 and 1; (ii) a discret spectrum of masses among the particles; (iii) different distributions of the bath including the Maxwell distribution of statistical equilibrium (thermal bath) and the step function (water bag). Specific applications are given for self-gravitating systems in three dimensions, Coulombian systems in two dimensions and for the HMF model in one dimension.  相似文献   

3.
It is well known that long-range interactions pose serious problems for the formulation of statistical mechanics. We show in this paper that ensemble equivalence is violated in a simple mean-field model of N fully coupled classical rotators with repulsive interaction (antiferromagnetic XY model). While in the canonical ensemble the rotators are randomly dispersed over all angles, in the microcanonical ensemble a bi-cluster of rotators separated by angle , forms in the low energy limit. We attribute this behavior to the extreme degeneracy of the ground state. We obtain empirically an analytical formula for the probability density function for the angle made by the rotator, which compares extremely well with numerical data and should become exact in the zero energy limit. At low energy, in the presence of the bi-cluster, an extensive amount of energy is located in the single harmonic mode, with the result that the energy temperature relation is modified. Although still linear, , it has the slope , instead of the canonical value . Received 1 February 2000  相似文献   

4.
We apply the Nyquist method to the Hamiltonian mean field (HMF) model in order to settle the linear dynamical stability of a spatially homogeneous distribution function with respect to the Vlasov equation. We consider the case of Maxwell (isothermal) and Tsallis (polytropic) distributions and show that the system is stable above a critical kinetic temperature Tc and unstable below it. Then, we consider a symmetric double-humped distribution, made of the superposition of two decentered Maxwellians, and show the existence of a re-entrant phase in the stability diagram. When we consider an asymmetric double-humped distribution, the re-entrant phase disappears above a critical value of the asymmetry factor Δ > 1.09. We also consider the HMF model with a repulsive interaction. In that case, single-humped distributions are always stable. For asymmetric double-humped distributions, there is a re-entrant phase for 1 ≤ Δ < 25.6, a double re-entrant phase for 25.6 < Δ < 43.9 and no re-entrant phase for Δ > 43.9. Finally, we extend our results to arbitrary potentials of interaction and mention the connexion between the HMF model, Coulombian plasmas and gravitational systems. We discuss the relation between linear dynamical stability and formal nonlinear dynamical stability and show their equivalence for spatially homogeneous distributions. We also provide a criterion of dynamical stability for spatially inhomogeneous systems.  相似文献   

5.
We implement a general numerical calculation that allows for a direct comparison between nonlinear Hamiltonian dynamics and the Boltzmann-Gibbs canonical distribution in Gibbs Γ-space. Using paradigmatic first-neighbor models, namely, the inertial XY ferromagnet and the Fermi-Pasta-Ulam β-model, we show that at intermediate energies the Boltzmann-Gibbs equilibrium distribution is a consequence of Newton second law (F=ma). At higher energies we discuss partial agreement between time and ensemble averages.  相似文献   

6.
We study an analytically tractable model with long-range interactions for which an out-of-equilibrium very long-lived coherent structure spontaneously appears. The dynamics of this model is indeed very peculiar: a bicluster forms at low energy and is stable for very long time, contrary to statistical mechanics predictions. We first explain the onset of the structure, by approximating the short time dynamics with a forced Burgers equation. The emergence of the bicluster is the signature of the shock waves present in the associated hydrodynamical equations. The striking quantitative agreement with the dynamics of the particles fully confirms this procedure. We then show that a very fast timescale can be singled out from a slower motion. This enables us to use an adiabatic approximation to derive an effective Hamiltonian that describes very well the long time dynamics. We then get an explanation of the very long time stability of the bicluster: this out-of-equilibrium state corresponds to a statistical equilibrium of an effective mean-field dynamics. Received 28 February 2002 / Received in final form 24 July 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: Thierry.Dauxois@ens-lyon.fr RID="b" ID="b"UMR-CNRS 5672 RID="c" ID="c"UMR 5582  相似文献   

7.
We develop the kinetic theory of point vortices in two-dimensional hydrodynamics and illustrate the main results of the theory with numerical simulations. We first consider the evolution of the system “as a whole” and show that the evolution of the vorticity profile is due to resonances between different orbits of the point vortices. The evolution stops when the profile of angular velocity becomes monotonic even if the system has not reached the statistical equilibrium state (Boltzmann distribution). In that case, the system remains blocked in a quasi stationary state with a non standard distribution. We also study the relaxation of a test vortex in a steady bath of field vortices. The relaxation of the test vortex is described by a Fokker-Planck equation involving a diffusion term and a drift term. The diffusion coefficient, which is proportional to the density of field vortices and inversely proportional to the shear, usually decreases rapidly with the distance. The drift is proportional to the gradient of the density profile of the field vortices and is connected to the diffusion coefficient by a generalized Einstein relation. We study the evolution of the tail of the distribution function of the test vortex and show that it has a front structure. We also study how the temporal auto-correlation function of the position of the test vortex decreases with time and find that it usually exhibits an algebraic behavior with an exponent that we compute analytically. We mention analogies with other systems with long-range interactions.  相似文献   

8.
We introduce, and numerically study, a system of N symplectically and globally coupled standard maps localized in a d=1 lattice array. The global coupling is modulated through a factor r, being r the distance between maps. Thus, interactions are long-range (nonintegrable) when 0≤α≤1, and short-range (integrable) when α>1. We verify that the largest Lyapunov exponent λM scales as λM ∝ N-κ(α), where κ(α) is positive when interactions are long-range, yielding weak chaos in the thermodynamic limit N↦∞ (hence λM→0). In the short-range case, κ(α) appears to vanish, and the behaviour corresponds to strong chaos. We show that, for certain values of the control parameters of the system, long-lasting metastable states can be present. Their duration tc scales as tc ∝Nβ(α), where β(α) appears to be numerically in agreement with the following behavior: β>0 for 0 ≤α< 1, and zero for α≥1. These results are consistent with features typically found in nonextensive statistical mechanics. Moreover, they exhibit strong similarity between the present discrete-time system, and the α-XY Hamiltonian ferromagnetic model.  相似文献   

9.
Single-pass free-electron lasers constitute an example of systems with long-range interactions. The light-particle interplay leading to the power growth and successive relaxation towards a quasi-stationary state is governed by the Vlasov equation. A maximum entropy principle inspired to Lynden-Bell's theory of “violent relaxation" for the Vlasov equation can be invoked to analytically characterize the behaviour of the saturated system. In particular, we here concentrate on the case of coherent harmonic generation obtained from an externally seeded free-electron laser and provide a simple strategy to predict the laser intensity as well as the final electron-beam energy distribution.  相似文献   

10.
We study a general class of nonlinear mean field Fokker-Planck equations in relation with an effective generalized thermodynamical (E.G.T.) formalism. We show that these equations describe several physical systems such as: chemotaxis of bacterial populations, Bose-Einstein condensation in the canonical ensemble, porous media, generalized Cahn-Hilliard equations, Kuramoto model, BMF model, Burgers equation, Smoluchowski-Poisson system for self-gravitating Brownian particles, Debye-Hückel theory of electrolytes, two-dimensional turbulence... In particular, we show that nonlinear mean field Fokker-Planck equations can provide generalized Keller-Segel models for the chemotaxis of biological populations. As an example, we introduce a new model of chemotaxis incorporating both effects of anomalous diffusion and exclusion principle (volume filling). Therefore, the notion of generalized thermodynamics can have applications for concrete physical systems. We also consider nonlinear mean field Fokker-Planck equations in phase space and show the passage from the generalized Kramers equation to the generalized Smoluchowski equation in a strong friction limit. Our formalism is simple and illustrated by several explicit examples corresponding to Boltzmann, Tsallis, Fermi-Dirac and Bose-Einstein entropies among others.  相似文献   

11.
We introduce a new nonextensive entropic measure that grows like , where N is the size of the system under consideration. This kind of nonextensivity arises in a natural way in some N-body systems endowed with long-range interactions described by interparticle potentials. The power law (weakly nonextensive) behavior exhibited by is intermediate between (1) the linear (extensive) regime characterizing the standard Boltzmann-Gibbs entropy and (2) the exponential law (strongly nonextensive) behavior associated with the Tsallis generalized q-entropies. The functional is parametrized by the real number in such a way that the standard logarithmic entropy is recovered when . We study the mathematical properties of the new entropy, showing that the basic requirements for a well behaved entropy functional are verified, i.e., possesses the usual properties of positivity, equiprobability, concavity and irreversibility and verifies Khinchin axioms except the one related to additivity since is nonextensive. For , the entropy becomes superadditive in the thermodynamic limit. The present formalism is illustrated by a numerical study of the thermodynamic scaling laws of a ferromagnetic Ising model with long-range interactions. Received 24 May 2000  相似文献   

12.
In this paper, the particles of quantum gases, that is, bosons and fermions are regarded as g-ons which obey fractional exclusion statistics. With this point of departure the thermostatistical relations concerning the Bose and Fermi systems are unified under the g-on formulation where a fractal approach is adopted. The fractal inspired entropy, the partition function, distribution function, the thermodynamics potential and the total number of g-ons have been found for a grand canonical g-on system. It is shown that from the g-on formulation; by a suitable choice of the parameters of the nonextensivity q, the parameter of the fractional exclusion statistics g, nonextensive Tsallis as well as extensive (q=1) standard thermostatistical relations of the Bose and Fermi systems are recovered. Received 17 September 1999  相似文献   

13.
By using integral representations the perturbation expansion and the Bogoliubov inequality in nonextensive Tsallis statistics are investigated in a unified way. This procedure extends the analysis performed recently by Lenzi et al. [Phys. Rev. Lett. 80, 218 (1998)] to the quantum (discrete spectra) case, for q<1. An example is presented in order to illustrate the method. Received 19 November 1998  相似文献   

14.
Dissipative one-dimensional maps may exhibit special points (e.g., chaos threshold) at which the Lyapunov exponent vanishes. Consistently, the sensitivity to the initial conditions has a power-law time dependence, instead of the usual exponential one. The associated exponent can be identified with 1/(1-q), where q characterizes the nonextensivity of a generalized entropic form currently used to extend standard, Boltzmann-Gibbs statistical mechanics in order to cover a variety of anomalous situations. It has been recently proposed (Lyra and Tsallis, Phys. Rev. Lett. 80, 53 (1998)) for such maps the scaling law , where and are the extreme values appearing in the multifractal function. We generalize herein the usual circular map by considering inflexions of arbitrary power z, and verify that the scaling law holds for a large range of z. Since, for this family of maps, the Hausdorff dimension df equals unity for all z in contrast with q which does depend on z, it becomes clear that df plays no major role in the sensitivity to the initial conditions. Received 5 February 1999  相似文献   

15.
Liyan Liu 《Physica A》2008,387(22):5417-5421
We investigate the general property of the energy fluctuation in the canonical ensemble and the ensemble equivalence in Tsallis statistics. By taking the generalized ideal gas and the generalized harmonic oscillators as examples, we show that, when the particle number N is large enough, the relative fluctuation of the energy is proportional to 1/N in the new statistics, instead of in Boltzmann-Gibbs statistics. Thus the equivalence between microcanonical and canonical ensemble still holds in Tsallis statistics.  相似文献   

16.
We examine the fractal patterns arising in the Lattice Limit Cycle model, when it is restricted on square and fractal lattices. We show that, for processes taking place on regular 2d substrates, the fractal dimensions depend on the kinetic constants and we have observed a sharp phase-transition from uniform 2d spatial distributions (df=2) when the kinetic parameters are near the Hopf bifurcation point, to a inside the limit cycle region. For processes taking place on substrates which contain inactive sites, we observe nucleation of homologous species around inactive regions leading to poisoning, when the active sites are distributed in a fractal manner on the substrate. This is less frequent in cases where the active sites are distributed uniformly and randomly on the lattice leading, normally, to non-trivial steady states.  相似文献   

17.
We explore the consequences of Replica Symmetry Breaking at zero temperature. We introduce a repulsive coupling between a system and its unperturbed ground state. In the Replica Symmetry Breaking scenario a finite coupling induces a non trivial overlap probability distribution among the unperturbed ground state and the one in presence of the coupling. We find a closed formula for this probability for arbitrary ultrametric trees, in terms of the parameters defining the tree. The same probability is computed in numerical simulations of a simple model with many ground states, but no ultrametricity: polymers in random media in 1+1 dimension. This gives us an idea of what violation of our formula can be expected in cases when ultrametricity does not hold. Received 16 June 2000  相似文献   

18.
Generalized synchronization in a drive-response Chua circuits is investigated. A cascade of transitions to GS is observed with increasing the interaction strength. The mechanism on the transitions to GS is given based on the asymptotic behaviors of response dynamics.  相似文献   

19.
Using a q-analog of Boltzmann's combinatorial basis of entropy, the non-asymptotic non-degenerate and degenerate combinatorial forms of the Tsallis entropy function are derived. The new measures – supersets of the Tsallis entropy and the non-asymptotic variant of the Shannon entropy – are functions of the probability and degeneracy of each state, the Tsallis parameter q and the number of entities N. The analysis extends the Tsallis entropy concept to systems of small numbers of entities, with implications for the permissible range of q and the role of degeneracy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号