首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Truncation artifacts arise in magnetic resonance spectroscopic imaging (MRSI) of the human brain due to limited coverage of k-space necessitated by low SNR of metabolite signal and limited scanning time. In proton MRSI of the head, intense extra-cranial lipid signals “bleed” into brain regions, thereby contaminating signals of metabolites therein. This work presents a data acquisition strategy for reducing truncation artifact based on extended k-space coverage achieved with a dual-SNR strategy. Using the fact that the SNR in k-space increases monotonically with sampling density, dual-SNR is achieved in an efficient manner with a dual-density spiral k-space trajectory that permits a smooth transition from high density to low density. The technique is demonstrated to be effective in reducing “bleeding” of extra-cranial lipid signals while preserving the SNR of metabolites in the brain.  相似文献   

2.
The aim of this study was to establish a rapid method for in vivo quantification of a large range of flow velocities using phase information. A basic gradient-echo sequence was constructed, in which flow was encoded along the slice selection direction by variation of the amplitude of a bipolar gradient without changes in sequence timings. The influence of field inhomogeneities and eddy currents was studied in a 1.5 T scanner. From the basic sequence, interleaved sequences for calibration and in vivo flow determination were constructed, and flow information was obtained by pairwise subtraction of velocity-encoded from velocity non-encoded phase images. Calibration was performed in a nongated mode using flow phantoms, and the results were compared with theoretically calculated encoding efficiencies. In vivo flow was studied in healthy volunteers in three different areas using cardiac gating; central blood flow in the great thoracic vessels, peripheral blood flow in the popliteal vessels, and flow of cerebrospinal fluid (CSF) in the cerebral aqueduct. The results show good agreement with results obtained with other techniques. The proposed method for flow determination was shown to be rapid and flexible, and we thus conclude that it seems well suited for routine clinical MR examinations.  相似文献   

3.
宫琴  叶大田  郭连生  刘博  刘铤 《声学学报》2002,27(5):471-476
为了去除混在瞬态诱发耳声发射(TEOAE)信号中的刺激伪迹,同时保留瞬态诱发耳声发射信号的有效信息,本文首次提出将预测器-减法器-恢复器构成的滤波器,用于去除受试者耳中的刺激伪迹,来准确提取TEOAE信号。此方法与导出的非线性响应方法相比,不但能准确有效地去除刺激伪迹,而且能保留TEOAE信号的有效成分。是一种非常有前景的应用于临床的方法。  相似文献   

4.
ObjectiveDiffusion-weighted imaging (DWI) in the liver suffers from signal loss due to the cardiac motion artifact, especially in the left liver lobe. The purpose of this work was to improve the image quality of liver DWI in terms of cardiac motion artifact reduction and achievement of black-blood images in low b-value images.Material and methodsTen healthy volunteers (age 20–31 years) underwent MRI examinations at 1.5 T with a prototype DWI sequence provided by the vendor. Two diffusion encodings (i.e. waveforms), monopolar and flow-compensated, and the b-values 0, 20, 50, 100, 150, 600 and 800 s/mm2 were used. Two Likert scales describing the severity of the pulsation artifact and the quality of the black-blood state were defined and evaluated by two experienced radiologists. Regions of interest (ROIs) were manually drawn in the right and left liver lobe in each slice and combined to a volume of interest (VOI). The mean and coefficient of variation were calculated for each normalized VOI-averaged signal to assess the severity of the cardiac motion artifact. The ADC was calculated using two b-values once for the monopolar data and once with mixed data, using the monopolar data for the small and the flow-compensated data for the high b-value. A Wilcoxon rank sum test was used to compare the Likert scores obtained for monopolar and flow-compensated data.ResultsAt b-values from 20 to 150 s/mm2, unlike the flow-compensated diffusion encoding, the monopolar encoding yielded black blood in all images with a negligible signal loss due to the cardiac motion artifact. At the b-values 600 and 800 s/mm2, the flow-compensated encoding resulted in a significantly reduced cardiac motion artifact, especially in the left liver lobe, and in a black-blood state. The ADC calculated with monopolar data was significantly higher in the left than in the right liver lobe.ConclusionIt is recommendable to use the following mixed waveform protocol: Monopolar diffusion encodings at small b-values and flow-compensated diffusion encodings at high b-values.  相似文献   

5.
ObjectivesTo assess the clinical utility of a prototype sequence for metal artifact reduction, the multiacquisition variable–resonance image combination selective (MAVRIC-SL) at 3 T. This sequence allows a surgical prosthesis-dependent reduction in the number of spectral bins. We compared the prototype MAVRIC SL to the conventional two-dimensional fast spin-echo (FSE) sequences and MAVRIC SL images acquired with all spectral bins to those acquired with the optimized number of spectral bins.MethodsMAVRIC SL images were acquired in 25 image sets from August 2017 to April 2018. For each subject, the optimized number of spectral bins was determined using a short spectral calibration scan. The image sets obtained with magnetic resonance imaging that were used for the analysis consisted of MAVRIC-SL proton density (PD)-weighted or short inversion time inversion recovery (STIR) images acquired with all 24 spectral bins, the corresponding images with the optimized number of spectral bins, and the conventional two-dimensional FSE or STIR PD-weighted images. A musculoskeletal radiologist reviewed and scored the images using a five-point scale for artifact reduction around the prosthesis and visualization of the prosthesis and peri-prosthetic tissues. Quantitative evaluation of the peri-prosthetic tissues was also performed. The Wilcoxon rank-sum test was used to test for significance.ResultsThe MAVRIC SL images enabled a significantly improved reduction in metallic artifacts compared to the conventional two-dimensional FSE sequences. The optimized number of spectral bins ranged from 6 to 20, depending on the prosthesis susceptibility difference, size, and orientation to the B0 field. The scan times significantly decreased with a reduced number of spectral bins (354.0 ± 139.1 versus 283.0 ± 89.6 s; 20% reduced scan time; p < .05). Compared to the MAVRIC SL images acquired with all 24 bins, the artifact reduction and visualization of the prosthesis and peri-prosthetic tissues on the MAVRIC SL images acquired with calibrated bins were not significantly different.ConclusionsCompared to the MAVRIC SL images acquired with all 24 spectral bins, those acquired with an optimized number of spectral bins can reduce metallic artifacts with no significant image quality degradation while providing reduced scan time.  相似文献   

6.
A fast MR sequence based on the RARE-myelographic technique allows the determination of cerebrospinal fluid (CSF) flow with a flow sensitivity below 1 mm/sec. The method averages flow over the ECG cycle and consequently measures net flow rather than ECG-dependent flow variations. The noninvasivity of this technique and the very short acquisition time of about 5 sec make this sequence a very useful diagnostic tool for a variety of CSF-flow dependent disorders like the determination of different types of hydrocephalus, the control of shunt operations and the assessment of communication pathways between CSF and cysts.  相似文献   

7.
Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper. The results based on the direct numerical simulation (DNS) indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction, leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag. In addition, experiments are carried out in a water tunnel via electro-magnetic (EM) actuators designed to produce the bidirectional traveling wave excitation as described in calculations. As a result, the actual substantial drag reduction is realized successfully in these experiments.  相似文献   

8.
According to non-rigid medical image registration, new method of classification registration is proposed. First, Feature points are extracted based on SIFT (Scale Invariant Feature Transform) from reference images and floating images to match feature points. And the coarse registration is performed using the least square method. Then the precise registration is achieved using the optical flow model algorithm. SIFT algorithm is based on local image features that are with good scale, rotation and illumination invariance. Optical flow algorithm does not extract features and use the image gray information directly, and its registration speed is faster. The both algorithms are complementary. SIFT algorithm is used for improving the convergence speed of optical flow algorithm, and optical flow algorithm makes the registration result more accurate. The experimental results prove that the algorithm can improve the accuracy of the non-rigid medical image registration and enhance the convergence speed. Therefore, the algorithm has some advantages in the image registration.  相似文献   

9.
Sheng Chen 《Physica A》2009,388(23):4803-4810
For microchannel flow simulation, the slip boundary model is very important to guarantee the accuracy of the solution. In this paper, a new slip model, the Langmuir slip model, instead of the popularly used Maxwell slip model, is incorporated into the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the rarefied gas flow. Its feasibility and accuracy are examined by simulations of microchannel flow. Although, for simplicity, in this paper our recently developed LB model is used to solve the flow field, this does not prevent the present boundary scheme from easily incorporating other LB models, for example the more advanced collision model with multiple relaxation times. In addition, the existing non-equilibrium extrapolation LB boundary scheme for macroscopic flows can be recovered naturally from the present scheme when the Knudsen number .  相似文献   

10.
Non-contact blood flow determination using a laser speckle method   总被引:2,自引:0,他引:2  
An electro-optical device is described which allows the non-contact determination of the skin blood flow and its temporal course. As the laser light penetrates the skin, it is not only scattered from the epidermis but also from the moving red blood cells in the capillaries. The scattered light is time dependent and can be described in terms of the dynamic laser speckle effect. Measurements at the skin demonstrate that there is a so-called ‘involuntary body movement’ which must be taken into account when the measurement of the blood flow is determined. Theoretical considerations show a way to reduce the influence of this movement. Some measurements demonstrate the response of the device to blood flow variations.  相似文献   

11.
We study the problem of wear of a rotationally symmetric profile subjected to oscillations with small amplitude. Under these conditions, sliding occurs at the boundary of the contact area while the inner parts of the contact area may still stick. In a recent paper, Dimaki with colleagues proposed a numerically exact simulation procedure based on the method of dimensionality reduction (MDR). This drastically reduced the simulation time compared with conventional finite element simulations. The proposed simulation procedure requires carrying out the direct and the inverse MDR transformations in each time step. This is the main time consuming operation in the proposed method. However, solutions obtained with this method showed a remarkable simplicity of the development of wear profiles in the MDR space. In the present paper, we utilize these results to formulate an approximate model, in which the wear is simulated directly in the one-dimensional space without using integral transformations. This speeds up the simulations of wear by further several orders of magnitude.  相似文献   

12.
流动管道内利用旁通管道反声降噪研究   总被引:1,自引:0,他引:1  
降低流动管道噪声在工程上是非常有用的。本文应用线性声学理论将无流动时旁通管道反声降噪方法推广到具有流动的情况,进行了数值计算和实验研究。数值工作包括建立相应的声学关系和管道分叉点连接条件;计算了多种噪声源传声损失频率特性,并讨论了主要参数对反声的影响。实验研究是对单段旁通管道有吸声尖劈的情况下进行的,实验时采用不同的噪声源和不同的流速,测量结果与理论计算符合良好。  相似文献   

13.
用激光散斑跨零法监测皮肤血流变化   总被引:1,自引:0,他引:1  
刘迎  彭翔 《光学学报》1990,10(11):005-1009
由皮肤散射形成的动态激光散斑携带了皮肤血流的信息.由于来自运动着的红血球的散射光两次经过皮肤表面,因而受到三次随机调制.本文根据串级散斑的快速时间涨落的特点,提出了用激光散斑的胯零率测量皮肤血流的新方法,给出了跨零率与血流速度参数之间的关系式和实验结果.  相似文献   

14.
15.
We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young–Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.  相似文献   

16.
Segmented echoplanar imaging (EPI) is a potentially valuable acquisition method for neonatal diffusion-weighted imaging (DWI) due to the lower acoustic noise levels as well as reduced blurring and distortion associated with it, as compared with single-shot EPI. Reduced acoustic noise may be important for the safety of neonates. However, little information regarding the efficacy of segmented EPI motion correction schemes is available for the neonatal population. We quantitatively assessed the efficacy of a postprocessing technique for motion artifact reduction involving phase correction by nonlinear optimization, alone and in combination with a novel method of utilizing a second data set (referred to as segment data swapping). These methods were applied to three-directional eight-segment echoplanar DW images obtained from 13 sedated neonates and to nine-directional DW images from 3 unsedated neonates. For comparison, the efficacy of the nonlinear optimization method was also evaluated in four adults. Motion correction efficacy was quantified using the motion artifact-to-signal ratio (ASR). The median, 70th percentile and 90th percentile ASR values obtained from neonatal three-directional DWI using nonlinear optimization alone were 2.8%, 4.6% and 9.6%, respectively. Efficacy improved (P<.005), particularly in dealing with the images most difficult to correct, when the phase correction by numerical optimization was combined with segment data swapping (median ASR=1.9%, 70th percentile ASR=2.7%, 90th percentile ASR=4.3%). Similar results were obtained for nine-directional diffusion tensor imaging. Nonlinear optimization alone applied to adult images showed significantly (P<.001) lower ASR values (median ASR=0.9%, 70th percentile ASR=2.1%, 90th percentile ASR=4.1%), demonstrating the greater challenge in DWI of neonates with segmented EPI. In conclusion, phase correction by nonlinear optimization provides effective motion correction for neonatal DW eight-segment EPI, especially when used in conjunction with segment data swapping.  相似文献   

17.
A clutter rejection method based on the projection-pursuit (PP) was proposed to reduce velocity artifacts caused by clutter signals in the ultrasound color flow imaging (CFI). Principal components are extracted by the PP to reduce their sensitivity to strong clutter signals originating from non-blood-flow regions. Then blood signals are obtained by removing the estimated clutter space in the eigenvector domain. Computer simulations and in vivo experiments are carried out to validate the proposed method. Results show that compared with conventional high-pass filter (HPF), this method can achieve a better velocity profile and vessel shape. It is also shown that this method causes less velocity artifacts in non-blood-flow regions than the eigenvector filter and achieves a higher inside-to-outside blood energy ratio by 5 dB. Therefore, this approach is expected to be an effective clutter rejection algorithm to improve the image quality in the ultrasound CFI.  相似文献   

18.
Optimal shape control of fluid flow using variational level set method   总被引:2,自引:0,他引:2  
In this Letter, we propose a new algorithm for optimal shape control in fluid flow based on the variational level set method. By this algorithm, a relatively smooth evolution can be maintained without re-initialization. Finally, the promising features of the proposed algorithm are illustrated by two benchmark numerical examples.  相似文献   

19.
A recently developed space-time adaptive mesh refinement algorithm (AMRA) for simulating isotropic one- and two-dimensional excitable media is generalized to simulate three-dimensional anisotropic media. The accuracy and efficiency of the algorithm is investigated for anisotropic and inhomogeneous 2D and 3D domains using the Luo-Rudy 1 (LR1) and FitzHugh-Nagumo models. For a propagating wave in a 3D slab of tissue with LR1 membrane kinetics and rotational anisotropy comparable to that found in the human heart, factors of 50 and 30 are found, respectively, for the speedup and for the savings in memory compared to an algorithm using a uniform space-time mesh at the finest resolution of the AMRA method. For anisotropic 2D and 3D media, we find no reduction in accuracy compared to a uniform space-time mesh. These results suggest that the AMRA will be able to simulate the 3D electrical dynamics of canine ventricles quantitatively for 1 s using 32 1-GHz Alpha processors in approximately 9 h.  相似文献   

20.
为提高化学氧碘激光性能,分别使用-117 ℃乙醇、-110 ℃氟里昂和-45 ℃质量分数为50%过氧化氢冷射流进行单重态氧气流中的水汽脱除实验。实验结果表明:这3种冷射流的除水效果并不显著,乙醇基本上没有任何脱水效果,氟里昂和过氧化氢仅可以将水汽含量分别降低至原来的约1/5和1/4;乙醇和氟里昂因极易挥发而对气流产生严重干扰,并不适合用于除水;只有难挥发的过氧化氢才是合适的候选。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号