首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystals of the chalcopyrite family, AgGaSe2, AgGaS2, and CdGa2S4, doped with chromium ions have been investigated using high-frequency broad-band EPR spectroscopy in the range 65–530 GHz at T = 4.2 K. It has been revealed that, in the AgGaSe2 and AgGaS2 crystals, the Cr2+ ions occupy positions with orthorhombic and tetragonal symmetry, whereas the previously investigated CdGaS4 crystals contain only tetragonal centers. The observed spectra have been described in the framework of the spin-Hamiltonian formalism. Apart from the divalent chromium centers, the EPR lines attributed to non-Kramers ions are observed in the frequency range 300–450 GHz for all the crystals under investigation. The nature of these lines has been discussed.  相似文献   

2.
Different mixed iron-cobalt molybdates Co1−xFexMoO4 (0 < x ≤ 1) were prepared by means of a ceramic process. The influence of the isostructural substitution of Co2+ by Fe2+ and Fe3+ on the electrical conductivity of CoMoO4 was studied in the temperature range (50–600°C). The results show that the iron substitution increases the electrical conductivity and changes the conduction mechanism of CoMoO4. From a band conduction mechanism with an activation energy higher than 0.8 eV the conduction mode transforms into a hopping mechanism between the Fe2+ and Fe3+ ions in the octahedrally coordinated divalent cation sublattice. The activation energy is lower (0.4 eV) and does not alter around the polymorphic transition temperature. Owing to careful oxidations of the samples into cation deficient phases it was shown that the conductivity is proportional to the [Fe2+]/[Fe3+] ratio. These mild oxidations confirm the hopping mechanism. The presence of Co2+/Co3+ pairs has a minor contribution to the overall conductivity process. Paper presented at the 2nd Euroconference, Funchal, Madeira, Portugal, 10 – 16 Sept. 1995  相似文献   

3.
Influence of the partial substitution of paramagnetic Fe3+ ions by diamagnetic Ga3+ ions in the trigonal crystal GdFe3 (BO3)4 on its optical and magnetic properties is studied and discussed in connection with problems common for all antiferromagnets containing 3d 5 ions. Polarized optical absorption spectra and linear birefringence of GdFe3 (BO3)4 and GdFe2.1Ga0.9 (BO3)4 single crystals have been measured in the temperature range 85–293 K. Specific heat temperature dependence (2–300 K) and structure of GdFe2.1Ga0.9 (BO3)4 crystal have been also studied. As a result of substitution of 30% Fe to Ga the Neel temperature diminishes from 38 till 16 K, the strong absorption band edge shifts on 860 cm-1 (0.11 eV) to higher energy and the d-d transitions intensity decreases substantially larger than the Fe concentration does. Strong absorption band edge is shown to be due to Mott-Hubbard transitions. Correlation between position of the strong absorption band edge and the Neel temperature of antiferromagnets has been revealed. Properties of the doubly forbidden d-d transitions in the studied crystals and in other antiferromagnets are explained within the framework of the model of the exchange-vibronic pair absorption, which is theoretically analyzed in detail. The model permitted us to determine the connection between parameters of d-d absorption bands (intensity, width and their temperature dependences), on the one hand, and the exchange, spin-orbit and electron-lattice interactions, on the other hand.  相似文献   

4.
Results of investigations of the spectroscopic properties of manganese-activated single crystals of Sr3Ga2Ge4O14 by the methods of optical and EPR spectroscopy are reported. It is shown that magnagese activator ions form substitutional centers Mn3+ and Mn2+ in 1a-octahedral positions of the Sr3Ga2Ge4O14 lattice. Changes in the opticla properties of Sr3Ga2Ge4O14: Mn after vacuum thermal annealing are attributed to charge transfer of some of the manganese ions (Mn3+→Mn2+). The relationship between the spectroscopical properties of Mn2+ ions and the crystallochemical structure of the system are discussed. I. Franko L’vov State University, 50, Dragomanov St., L’vov, 290005, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 6, pp. 779–783, November–December, 1997.  相似文献   

5.
Abstract

The tetragonal distortions of local octahedral environments of Cr3+, Fe3+ and Gd3+ ions in Rb2CdF4, Cs2CdF4, RbCdF3 and CsCdF3 crystals have been studied by analyzing their EPR spectra. From the studies, it is found that the tetragonal distortions for Cr3+ and Fe3+ impurity ions, which substitute Cd2+ and have nearly the same ionic radius, are close to each other, whereas that for Gd3+ impurity ion, having a larger ionic radius, is larger than those for Cr3+ and Fe3+ ions in the same crystal. It appears that not only the impurity-ligand distance, but also the tetragonal distortions of impurity centres in crystals are closely related to the size of impurity.  相似文献   

6.
We have studied the effect of doping with Eu2+ and Ce3+ ions on the photoluminescence (PL) of BaGa2Se4 crystals in the temperature range 77–300 K. We have established that the broad bands with maxima at wavelengths 456 nm and 506 nm observed in the photoluminescence spectra of BaGa2Se4:Ce3+ crystals are due to intracenter transitions 5d → 2F7/2 and 5d →2F5/2 of the Ce3+ ions, while the broad photoluminescence band with maximum at 521 nm in the spectrum of BaGa2Se4:Eu2+ is associated with 4f6 5d → 4f7 (8S7/2) transitions of the Eu2+ ion. We show that in BaGa2Se4:Eu2+,Ce3+ crystals, excitation energy is transferred from the Ce3+ ions to the Eu2+ ions.  相似文献   

7.
Results of investigations of spectroscopic properties of Ca3Ga2Ge4O14 single crystals activated with Sm3+ ions are reported. It is shown that Sm3+ ions in Ca3Ga2Ge4O14 form a type of activator quasicenter whose nature is associated with disordering of the matrix. I. Franko Lvov State University, 50, Dragomanov St., Lvov, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 2, pp. 296–298, March–April, 1998.  相似文献   

8.
A photocontrolled resonance decrease in microhardness, which is due to the application of mutually perpendicular static and microwave fields, in γ-irradiated KCl:Fe crystals has been revealed. It has been found that the magnetic plasticity of unirradiated γ-KCl:Fe crystals is due to the resonance effect of magnetic fields on two types of impurity centers: first, centers containing Fe2+ c ion-vacancy pairs and, second, centers containing Fe+ ions. The illumination of γ-KCl:Fe crystals with F-light (with a wavelength of λ = 500–600 nm) is accompanied by rearrangement of the spectrum of electron paramagnetic resonance detected by a change in microhardness. The effect of F-light on the spectrum of magnetic resonance plasticity is manifested as the suppression of the spectra of Fe2+ c ions with effective g-factors of 7.0 and 3.5 due to their recombination with F-electrons and reconstruction to Fe+ centers with g-factors of 2.2 and 4.1.  相似文献   

9.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

10.
A new method is presented, allowing the nearly complete oxidization of lithium niobate crystals (LiNbO3), doped with large amounts of iron oxide (0.05–3 wt. % Fe2O3) utilizing annealing at 700 °C in the presence of externally applied electric fields. The treatment results in a concentration ratio of Fe2+ and Fe3+ ions of less than 2×10-3. Strong oxidization of iron in LiNbO3 reduces the photorefractive effect and is therefore of particular interest for nonlinear-optical applications. PACS 42.65.-k; 66.30.Hs; 71.55.-i  相似文献   

11.
The dependence of the electron mobility on the iron impurity content N Fe and temperature is studied for three variants of the ordering of Fe3+ ions in crystalline HgSe:Fe, a weakly correlated gas, states with near ordering like that in a strongly correlated Coulomb liquid, and long-range ordering. The electron mobilities owing to scattering on the correlated system of Fe3+ ions are determined. The temperature dependence of the mobility is analyzed for electron scattering on fluctuations in the charge density in a system of Fe2+-Fe3+ iron ions with mixed valency, and the correlation length is determined. It is shown that the ordering region for the Fe3+ ions encompasses only the first coordination sphere, i.e., near ordering in the position of the Fe3+ ions is established, as in a liquid. The coupling between the ordering of the Fe3+ ions and the formation of a correlation gap in the density of impurity d-states and its effect on the low-temperature behavior of the electron mobility in HgSe:Fe crystals are examined. Fiz. Tverd. Tela (St. Petersburg) 40, 425–432 (March 1998)  相似文献   

12.
Published data on spectroscopic characteristics of saturable absorbers based on crystals doped with tetrahedrally coordinated transition-metal ions (Cr2+, Cr4+, Cr5+, V3+, Cr2+, Fe2+) in addition to their use as passive Q-switches for solid-state lasers emitting in the visible and near-infrared regions are reviewed. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 5–50, January–February, 2009.  相似文献   

13.
Absorption and luminescence spectra of Me7Eu2UO2(PO4)5 crystals (Me represents Na, Rb, or Cs) are investigated. It is established that the luminescence of Eu3+ ions in these crystals is sensitized by uranyl. The effect of the outer-sphere cation Me+ on the spectroscopic properties and structural features of the compounds under study is considered. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 1, pp. 89–94, January–February, 1999.  相似文献   

14.
Spinel oxide Cr0.5 Li0.5 Fe2O4 has been irradiated at Nuclear Science Centre, New Delhi, by 50 MeV lithium ions of fluence 5*1013 ions/cm2 and irradiation effect on hyperfine interactions has been investigated by Mossbauer spectroscopy. The Mossbauer spectrum of irradiated sample shows no paramagnetic doublet contribution and the hyperfine fields corresponding to the Fe3+ in the octahedral (B) and the tetrahedral (A) sites are very well separated. That is the observed superimposed A and B sites in unirradiated sample are split into separate lines after Li irradiation. Further an increase of the intensity of the lines (2)–(5) with respect to (1)–(6) signals an orientation of the hyperfine magnetic field towards a direction perpendicular to the ion path due to the irradiation induced strain by the latent tracks. The computer simulation of Mossbauer spectra indicated that the irradiated Fe3+-site occupancy of the A-site hyperfine field increased from 43% to 55% whereas the B-site hyperfine field decreased from 57% to 45% compared to unirradiated sample.  相似文献   

15.
We have studied the luminescent properties of Eu2+/3+ and Yb2+ ions in strontium hexaborate SrB6O10 for excitation in the 120–400 nm region. The luminescence spectra of Ln2+ ions in SrB6O10 consist of overlapping bands in the 370–520 nm region, due to 5d → 4f transitions at several nonequivalent centers. In the excitation spectra, besides the bands associated with 4f → 5d transitions in the Ln2+ ions, we also observe a band in the 135–160 nm region due to the transitions O(2p) → B(2s,2p) within the borate anions. The luminescence of the Eu3+ ions is excited most efficiently in the region of the Eu3+ charge transfer band (λmax = 226 nm). The results obtained are compared with data for Ln in other strontium borates. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 6, pp. 770–774, November–December, 2006.  相似文献   

16.
Resonance modes that are due to magnetic excitations in the exchange-coupled subsystems of rare-earth ions (R = Nd3+, Sm3+, and Gd3+) and Fe3+ ions have been detected in submillimeter transmission spectra (0.1–0.6 THz) of RFe3(BO3)4 iron borate-multiferroic single crystals. The strong interaction between spin oscillations of the Fe and R subsystems has been revealed, which determines the behavior of the modes depending on the anisotropy of the exchange splitting of the ground doublet of the R ion. It has been shown that the intensities of coupled modes (contributions to the magnetic permeability) depend strongly on the difference between the g factors of Fe and R ions. This dependence makes it possible to determine the sign of the latter g factor. In particular, a noticeable intensity of exchange Nd modes in NdFe3(BO3)4 is due to an increase in their contribution at g ⊥, ‖Nd < 0, while in GdFe3(BO3)4 with g Gdg Fe ≈ 2, the Fe and Gd contributions compensate each other and the exchange (Gd) mode is not observed. In spite of the weak interaction of Sm ions with the magnetic field, SmFe3(BO3)4 exhibits resonance modes, which are attributed to the excitation of Sm ions through the Fe subsystem.  相似文献   

17.
We report here the Mössbauer measurements on nanocrystalline perovskite structured manganite La0.8Sr0.2Mn0.8Fe0.19 57Fe0.01O3 as a function of pressure up to 10 GPa at room temperature. The nanocrystalline sample, prepared by sol–gel technique found to have crystallite sizes of ∼138 ± 10 Å. Zero-field electrical resistivity measurements with temperature support the nanocrystalline nature. At ambient pressure, Fe3+ as well as Fe4+ ions are distributed in two different environments – Fe3+ in low symmetric site surrounded by Mn3+ ions only while Fe4+ in high symmetric site with at least one Mn3+ ion. Pressure seems to affect the higher symmetric site. A sudden increase in isomer shift at 0.52 GPa indicates the first order phase transition representing the transformation of Fe4+ to Fe3+. Another transition at 3.7 GPa, represents the presence of Fe3+ in single kind of environment. Pressure dependence of electrical resistivity measurements verifies the transitions attributing the first order transition to the cross over of localized-electron to band magnetism.  相似文献   

18.
The antiferromagnetic resonance in single crystals of the YFe3(BO3)4-GdFe3(BO3)4 system is studied in the frequency range 25–140 GHz and the temperature range 4.2–50.0 K. It is established that the YFe3(BO3)4 crystal containing only the magnetic subsystem of Fe3+ ions is an antiferromagnet with an easy anisotropy plane. The temperature dependences of the gaps in the antiferromagnetic resonance spectra of GdFe3(BO3)4 and Y x Gd1 ? x Fe3(BO3)4 are used to calculate the contributions of the Fe3+ and Gd3+ subsystems to the magnetic anisotropy of these crystals. The contributions are found to be close in magnitude and have opposite signs. This leads to a relatively weak uniaxial anisotropy field in the crystals under investigation. Since the exchange interaction between the Gd3+ and Fe3+ ions magnetizes the magnetic subsystem of gadolinium, both subsystems start to contribute simultaneously at the Néel temperature of the iron subsystem.  相似文献   

19.
The local environment around Fe3+ centers in rutile TiO2 crystals is studied by employing fourth-order perturbation theory formula based on the dominant spin–orbit coupling mechanism. The zero-field splitting parameters (ZFSPs) D and E and crystal field parameters are modeled for the Fe3+ ions not only at the substitution Ti4+ site, but also at the interstitial site with local symmetry D2h. In order to acquire the best agreement between the calculated ZFSPs and those measured by electron magnetic resonance, the model parameters are adjusted on the basis of several approaches. This enables us to determine the feasible values of the structural distortions resulting from dopant Fe3+ ions. Consequently, it is confirmed that Fe3+ ions substitute for Ti4+ sites in rutile TiO2 crystals.  相似文献   

20.
Magnetic and spectroscopic properties of the planar antiferromagnet K2FeF4 are determined by the Fe2+ ions at tetragonal sites. The two-dimensional easy-plane anisotropy exhibited by K2FeF4 is due to the zero field splitting (ZFS) terms arising from the orbital singlet ground state of Fe2+ ions with the spin S=2. To provide insight into the single-ion magnetic anisotropy of K2FeF4, the crystal field theory and the microscopic spin Hamiltonian (MSH) approach based on the tensor method is adopted. Survey of available experimental data on the crystal field energy levels and free-ion parameters for Fe2+ ions in K2FeF4 and related compounds is carried out to provide input for microscopic modeling of the ZFS parameters and the Zeeman electronic ones. The ZFS parameters are expressed in the extended Stevens notation and include contributions up to the fourth-order using as perturbation the spin-orbit and electronic spin-spin couplings within the tetragonal crystal field states of the ground 5D multiplet. Modeling of the ZFS parameters and the Zeeman electronic ones is carried out. Variation of these parameters is studied taking into account reasonable ranges of the microscopic ones, i.e. the spin-orbit and spin-spin coupling constants, and the energy level splittings, suitable for Fe2+ ions in K2FeF4 and Fe2+:K2ZnF4. Conversions between the ZFS parameters in the extended Stevens notation and the conventional ones are considered to enable comparison with the data of others. Comparative analysis of the MSH formulas derived earlier and our more complete ones indicates the importance of terms omitted earlier as well as the fourth-order ZFS parameters and the spin-spin coupling related contributions. The results may be useful also for Fe2+ ions at axial symmetry sites in related systems, i.e. Fe:K2MnF4, Rb2Co1−xFexF4, Fe2+:Rb2CrCl4, and Fe2+:Rb2ZnCl4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号