首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hydrogen-bond-directed synthesis, X-ray crystal structures, and optical properties of the first chiral peptide rotaxanes are reported. Collectively these systems provide the first examples of single molecular species where the expression of chirality in the form of a circular dichroism (CD) response can selectively be switched "on" or "off", and its magnitude altered, through controlling the interactions between mechanically interlocked submolecular components. The switching is achievable both thermally and through changes in the nature of the environment. Peptido[2]rotaxanes consisting of an intrinsically achiral benzylic amide macrocycle locked onto various chiral dipeptide (Gly-L-Ala, Gly-L-Leu, Gly-L-Met, Gly-L-Phe, and Gly-L-Pro) threads exhibit strong (10-20k deg cm(2) dmol(-1)) negative induced CD (theta;) values in nonpolar solvents (e.g. CHCl(3)), where the intramolecular hydrogen bonding between thread and macrocycle is maximized. In polar solvents (e.g., MeOH), where the intercomponent hydrogen bonding is weakened, or switched off completely, the elliptical polarization falls close to zero in some cases and can even be switched to large positive values in others. Importantly, the mechanism of generating the switchable CD response in the chiral peptide rotaxanes is also determined: a combination of semiempirical calculations and geometrical modeling using the continuous chirality measure (CCM) shows that the chirality is transmitted from the amino acid asymmetric center on the thread via the macrocycle to the C-terminal stopper of the rotaxane. This understanding could have important implications for other areas where chiral transmission from one chemical entity to another underpins a physical or chemical response, such as the seeding of supertwisted nematic liquid crystalline phases or asymmetric synthesis.  相似文献   

2.
We report on the use of the hydrogen bond acceptor properties of some phosphorus-containing functional groups for the assembly of a series of [2]rotaxanes. Phosphinamides, and the homologous thio- and selenophosphinamides, act as hydrogen bond acceptors that, in conjunction with an appropriately positioned amide group on the thread, direct the assembly of amide-based macrocycles around the axle to form rotaxanes in up to 60% yields. Employing solely phosphorus-based functional groups as the hydrogen bond accepting groups on the thread, a bis(phosphinamide) template and a phosphine oxide-phosphinamide template afforded the corresponding rotaxanes in 18 and 15% yields, respectively. X-ray crystallography of the rotaxanes shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and various hydrogen bond accepting groups on the thread, including rare examples of amide-to-phosphinamide, -thiophosphinamide, and -selenophosphinamide groups. With a phosphine oxide-phosphinamide thread, the solid-state structure of the rotaxane is remarkable, featuring no direct intercomponent hydrogen bonds but rather a hydrogen bond network involving water molecules that bridge the H-bonding groups of the macrocycle and thread through bifurcated hydrogen bonds. The incorporation of phosphorus-based functional groups into rotaxanes may prove useful for the development of molecular shuttles in which the macrocycle can be used to hinder or expose binding ligating sites for metal-based catalysts.  相似文献   

3.
Di(acylamino)pyridines successfully template the formation of hydrogen‐bonded rotaxanes through five‐component clipping reactions. A solid‐state study showed the participation of the pyridine nitrogen atom in the stabilization of the mechanical bond between the thread and the benzylic amide macrocycle. The addition of external complementary binders to a series of interlocked bis(2,6‐di(acylamino)pyridines) promoted restraint of the back and forward ring motion. The original translation can be restored through a competitive recognition event by the addition of a preorganized bis(di(acylamino)pyridine) that forms stronger ADA–DAD complexes with the external binders.  相似文献   

4.
We report the synthesis of two [2]rotaxanes containing an interlocked three dimensional binding cavity formed from a pyridinium bis(amide) axle component containing two phenol donors, and an isophthalamide based macrocycle. In the competitive solvent mixture 1 : 1 CDCl3 : CD3OD, one of the receptors exhibits a much higher selectivity preference for chloride than an analogous rotaxane without the hydroxy groups. X-ray crystal structures reveal the chloride anion guest encapsulated within the interlocked binding cavity, though not all of the hydrogen bond donors are utilised. Computational semi-empirical simulations indicate that secondary intermolecular interactions occur between the axle hydroxy hydrogen bond donors and the [2]rotaxane macrocycle components, contributing to a more preorganised binding pocket, which may be responsible for the observed enhanced selectivity.  相似文献   

5.
New [2]rotaxanes were prepared by the threading and the slipping procedure, the latter having the advantage of not needing templating interactions. As a consequence, the first [2]rotaxane consisting of a tetraamide macrocycle and a pure hydrocarbon thread was synthesized (see 12a in Scheme 2). Sterically matching wheels and axles being the basic requirement of a successful slipping approach to rotaxanes, mono- and bishomologous wheels 5b , c with larger diameters than the parent 5a were synthesized and mechanically connected to amide axles 10a – c which were stoppered with blocking groups of different spatial demand (Scheme 1). The deslipping kinetics of the resulting rotaxanes 8a – c and 9a , b were measured and compared; it emerges that even slight increases in the wheel size require larger stoppers to stabilize the mechanical bond. Moreover, when the deslipping rate of 8a (amide wheel and amide axle) was determined in either DMF or THF, a strong dependence on the solvent polarity, which is caused by a differing extent of intramolecular H-bonds between the wheel and the axle, was observed. As expected, no such dependence was detected for rotaxane 12a (amide wheel and hydrocarbon axle) whose components cannot interact via H-bonds. The comparison of the sterically matching pairs of macrocycles and blocking groups, found by a systematic fitting based on the results of slipping and deslipping experiments, with other rotaxane types bearing similar stoppers allows conclusions concerning the relative cavity size of wheels of various structure.  相似文献   

6.
Although some reactions on rotaxanes have been reported, the characteristic features of the rotaxanes providing unique reaction fields have hardly been studied, especially as catalyst. In our continuous studies on interlocked molecules such as rotaxanes and catenanes, we have noticed the importance of such interlocked structures with high freedom in functionalized materials such as molecular catalyst. For catalytic asymmetric benzoin condensations, two optically active rotaxanes possessing thiazolium salt moieties were prepared using the binaphthyl group as the chiral auxiliary. The benzoin condensations of aromatic aldehydes catalyzed by the chiral rotaxanes as catalysts gave optically active benzoins with ca. 30% ee in moderate to high chemical yields depending upon the structure of rotaxane and the reaction conditions employed. From the results, two intrarotaxane chirality transfers are confirmed: (i) through-space chirality transfer from wheel to axle and (ii) through-bond chirality transfer controlled with an achiral wheel. Because these asymmetric reaction fields are specific to the rotaxane structure, the importance and possibility of the "rotaxane field" as a particular reaction field is demonstrated in this work.  相似文献   

7.
The synthesis and characterization of a series of hybrid organic-inorganic [2]rotaxanes is described. The ring components are heterometallic octa- ([Cr(7)MF(8)(O(2)C(t)Bu)(16)]; M = Co, Ni, Fe, Mn, Cu, Zn, and Cd) nuclear cages in which the metal centers are bridged by fluoride and pivalate ((t)BuCO(2)(-)) anions; the thread components feature dialkylammonium units that template the formation of the heterometallic rings about the axle to form the interlocked structures in up to 92% yield in conventional macrocyclization or one-pot 'stoppering-plus-macrocyclization' strategies. The presence in the reaction mixture of additives (secondary or tertiary amines or quaternary ammonium salts), and the nature of the stoppering groups (3,5-(t)Bu(2)C(6)H(3)CO(2)- or (t)BuCONH-), can have a significant effect on the rotaxane yield. The X-ray crystal structures of 11 different [2]rotaxanes, a pseudorotaxane, and a two-station molecular shuttle show two distinct types of intercomponent hydrogen bond motifs between the ammonium groups of the organic thread and the fluoride groups of the inorganic ring. The different hydrogen bonding motifs account for the very different rates of dynamics observed for the heterometallic ring on the thread (shuttling slow; rotation fast).  相似文献   

8.
We report on a switchable rotaxane molecular shuttle that features a pseudo‐meso 2,5‐disubstituted pyrrolidine catalytic unit on the axle whose local symmetry is broken according to the position of a threaded benzylic amide macrocycle. The macrocycle can be selectively switched (with light in one direction; with catalytic acid in the other) with high fidelity between binding sites located to either side of the pyrrolidine unit. The position of the macrocycle dictates the facial bias of the rotaxane‐catalyzed conjugate addition of aldehydes to vinyl sulfones. The pseudo‐meso non‐interlocked thread does not afford significant selectivity as a catalyst (2–14 % ee), whereas the rotaxane affords selectivities of up to 40 % ee with switching of the position of the macrocycle changing the handedness of the product formed (up to 60 % Δee).  相似文献   

9.
The synthesis of mechanically interlocked molecules is valuable due to their unique topologies. With π-stacking intercomponent interaction, e.g., phenanthroline and anthracene, novel [2]rotaxanes have been synthesized by dynamic imine clipping reaction. Their X-ray crystal structures indicate the π-stackings between the anthracene moiety (stopper) on the thread and the (hetero)aromatic rings at the macrocycle of the rotaxanes. Moreover, the length of glycol chains affects the extra π-stacking intercomponent interactions between the phenyl groups and the dimethoxy phenyl groups on the thread. Dynamic combinatorial library has shown at best 84% distribution of anthracene-threaded phenanthroline-based rotaxane, coinciding with the crystallography in that the additional π-stacking intercomponent interactions could increase the thermodynamic stability and selectivity of the rotaxanes.  相似文献   

10.
High-resolution IR spectroscopy has been employed to study isolated, switchable [2]rotaxanes. IR absorption spectra of two-station rotaxanes, their separate thread, and macrocycle components, as well as those of the individual stations incorporated into the thread, have been measured in the 1800-1000 cm(-1) region. These spectra have been fully analyzed, aided by quantum chemical predictions of the IR spectra. From these analyses, a comprehensive picture emerges of the conformational structure and binding interactions between the mechanically interlocked components of the rotaxane.  相似文献   

11.
Establishment of CH···π interactions between the aliphatic axis and the benzylic amide macrocycle of hydrogen-bonded [2]rotaxanes causes a measurable interference in the pirouetting submolecular motion of these interlocked molecules.  相似文献   

12.
Two novel multilevel switchable [2]rotaxanes containing an ammonium and a triazole station have been constructed by a CuI‐catalyzed azide–alkyne cycloaddition reaction. The macrocycle of [2]rotaxane containing a C6‐chain bridge between the two hydrogen bonding stations exhibits high selectivity for the ammonium cation in the protonated form. Interestingly, the macrocycle is able to interact with the two recognition stations when the bridge between them is shortened. Upon deprotonation of both [2]rotaxanes, the macrocycle moves towards the triazole recognition site due to the hydrogen‐bond interaction between the triazole nitrogen atoms and the amide groups in the macrocycle. Upon addition of chloride anion, the conformation of [2]rotaxane is changed because of the cooperative recognition of the chloride anion by a favorable hydrogen‐bond donor from both the macrocycle isophthalamide and thread triazole CH proton.  相似文献   

13.
Thin films of fumaramide [2]rotaxane, a mechanically interlocked molecule composed of a macrocycle and a thread in a "bead and thread" configuration, were prepared by vapor deposition on both Ag(111) and Au(111) substrates. X-ray photoelectron spectroscopy (XPS) and high-resolution electron-energy-loss spectroscopy were used to characterize monolayer and bulklike multilayer films. XPS determination of the relative amounts of carbon, nitrogen, and oxygen indicates that the molecule adsorbs intact. On both metal surfaces, molecules in the first adsorbed layer show an additional component in the C 1s XPS line attributed to chemisorption via amide groups. Molecular-dynamics simulation indicates that the molecule orients two of its eight phenyl rings, one from the macrocycle and one from the thread, in a parallel bonding geometry with respect to the metal surfaces, leaving three amide groups very close to the substrate. In the case of fumaramide [2]rotaxane adsorption on Au(111), the presence of certain out-of-plane phenyl ring and Au-O vibrational modes points to such bonding and a preferential molecular orientation. The theoretical and experimental results imply that the three-dimensional intermolecular configuration permits chemisorption at low coverage to be driven by interactions between the three amide functions of fumaramide [2]rotaxane and the Ag(111) or Au(111) surface.  相似文献   

14.
The concept of using [2]rotaxanes that carry one or more surrogate stoppers which can subsequently be converted chemically into other structural units, resulting in the formation of new interlocked molecular compounds, is introduced and exemplified. Starting from simple NH2(+)-centered/crown-ether-based [2]rotaxanes, containing either one or two benzylic triphenylphosphonium stoppers, the well-known Wittig reaction has been employed to make, 1) other [2]rotaxanes, 2) higher order rotaxanes, 3) branched rotaxanes, and 4) molecular shuttles--all isolated as pure compounds, following catalytic hydrogenations of their carbon-carbon double bonds, obtained when aromatic aldehydes react with the ylides produced when the benzylic triphenylphosphonium derivatives are treated with strong base. The two starting [2]rotaxanes were characterized fully in solution and also in the solid state by X-ray crystallography. The new interlocked molecular compounds that result from carrying out post-assembly Wittig reactions on two [2]rotaxanes were characterized by (dynamic) 1H NMR spectroscopy. In the case of a molecular shuttle in which the crown ether component is dibenzo[24]-crown-8 (DB24C8), shuttling is slow on the 1H NMR timescale, even at high temperatures. However, when DB24C8 is replaced by benzometaphenylene[25]-crown-8 as the ring component in the molecular shuttle, the frequency of the shuttling is observed to be around 100 Hz in [D4]methanol at 63 degrees C.  相似文献   

15.
Fréchet‐type dendrons (G0–G3) were added as both axle stoppering units and cyclic wheel appendages in a series of [2]rotaxanes, [3]rotaxanes, and molecular shuttles that employ 1,2‐bis(pyridinium)ethane axles and 24‐membered crown ethers wheels. The addition of dendrimer wedges as stoppering units dramatically increased the solubility of simple [2]rotaxanes in nonpolar solvents. The X‐ray structure of a G1‐stoppered [2]rotaxane shows how the dendritic units affect the structure of the interlocked components. Increased solubility allows observation of how the interaction of dendritic units on separate components in interlocked molecules influences switching properties and molecular size. In a series of [2]rotaxane molecular shuttles incorporating two recognition sites, it was demonstrated that an increase in generation on either the stoppering unit or cyclic wheel could influence both the rate of shuttling and the site preference of the wheel on the axle.  相似文献   

16.
Stable pillar[5]arene-containing [2]rotaxane building blocks with pentafluorophenyl ester stoppers have been efficiently prepared on a multi-gram scale. Reaction of these building blocks with various nucleophiles gave access to a wide range of [2]rotaxanes with amide, ester or thioester stoppers in good to excellent yields. The rotaxane structure is fully preserved during these chemical transformations. Actually, the addition-elimination mechanism at work during these transformations totally prevents the unthreading of the axle moiety of the mechanically interlocked system. The stopper exchange reactions were optimized both in solution and under mechanochemical solvent-free conditions. While amide formation is more efficient in solution, the solvent-free conditions are more powerful for the transesterification reactions. Starting from a fullerene-functionalized pillar[5]arene derivative, this new strategy gave easy access to a photoactive [2]rotaxane incorporating a C60 moiety and two Bodipy stoppers. Despite the absence of covalent connectivity between the Bodipy and the fullerene moieties in this photoactive molecular device, efficient through-space excited state interactions have been evidenced in this rotaxane.  相似文献   

17.
Structural rigidity and the preorganization of thread binding sites are shown to have a major influence on template efficiency in the synthesis of hydrogen bond-assembled rotaxanes. Preorganization is so effective, in fact, that with good hydrogen bond acceptors (amides) a "world record" yield of 97% for a [2]rotaxane is obtained. The truly remarkable feature of this efficient template, however, is that it allows even poor hydrogen bond acceptors (esters) to be used to prepare hydrogen bond-assembled rotaxanes, despite the presence of competing hydrogen bonding groups (anions) which bind the key intermediates at least 10000x more strongly than single, unorganized, ester groups! The structures of the rotaxanes are established unambiguously in solution by (1)H NMR spectroscopy and in the solid state by X-ray crystallography. As a series they provide unique experimental information regarding the nature of amide-ester hydrogen bonding interactions; in particular they suggest that in CDCl(3), amide-ester NH...O=C hydrogen bonds are approximately 1 kcal mol(-)(1) weaker than the corresponding amide-amide interactions.  相似文献   

18.
A synthetic approach to rotaxane architectures is described in which metal atoms catalyze covalent bond formation while simultaneously acting as the template for the assembly of the mechanically interlocked structure. This "active-metal" template strategy is exemplified using the Huisgen-Meldal-Fokin Cu(I)-catalyzed 1,3-cycloaddition of azides with terminal alkynes (the CuAAC "click" reaction). Coordination of Cu(I) to an endotopic pyridine-containing macrocycle allows the alkyne and azide to bind to metal atoms in such a way that the metal-mediated bond-forming reaction takes place through the cavity of the macrocycle--or macrocycles--forming a rotaxane. A variety of mono- and bidentate macrocyclic ligands are demonstrated to form [2]rotaxanes in this way, and by adding pyridine, the metal can turn over during the reaction, giving a catalytic active-metal template assembly process. Both the stoichiometric and catalytic versions of the reaction were also used to synthesize more complex two-station molecular shuttles. The dynamics of the translocation of the macrocycle by ligand exchange in these two-station shuttles could be controlled by coordination to different metal ions (rapid shuttling is observed with Cu(I), slow shuttling with Pd(II)). Under active-metal template reaction conditions that feature a high macrocycle:copper ratio, [3]rotaxanes (two macrocycles on a thread containing a single triazole ring) are also produced during the reaction. The latter observation shows that under these conditions the mechanism of the Cu(I)-catalyzed terminal alkyne-azide cycloaddition involves a reactive intermediate that features at least two metal ions.  相似文献   

19.
Rotaxanes are a class of interlocked compounds that have been extensively investigated for their potential utility as switches or sensors. We recently demonstrated that rotaxanes have further application as agents that transport material into cells. This novel finding prompted our investigation into the mechanism by which rotaxanes are involved in transmembrane transport. Two-dimensional NMR analysis showed that a cleft-containing rotaxane exists in two dominant conformations ("closed" and "open"). To determine the importance of conformational flexibility on the ability of the rotaxanes to bind guests and transport material into cells, the rotaxane was chemically modified to lock it in the closed conformation. Charged guests interact less favorably with the locked rotaxane, as compared to the unmodified rotaxane, both in an aqueous solution and in DMSO. In a chloroform solution, both rotaxanes bind the guests with similar affinities. The locked rotaxane exhibited a reduced capacity to transport a fluoresceinated peptide into cells, whereas the unmodified rotaxane efficiently delivers the peptide. Flow cytometry experiments demonstrated that a high percentage of the cells contained the delivered peptide (89-98%), the level of delivery is concentration dependent, and the rotaxanes and peptide have low toxicity. Cellular uptake of the peptide was largely temperature and ATP independent, suggesting that the rotaxane-peptide complex passes through the cellular membrane without requiring active cell-mediated processes. The results show that the sliding motion of the wheel is necessary for the delivery of materials into cells and can enhance the association of guests. These studies demonstrate the potential for rotaxanes as a new class of mechanical devices that deliver a variety of therapeutic agents into targeted cell populations.  相似文献   

20.
Ring size is a critically important parameter in many interlocked molecules as it directly impacts many of the unique molecular motions that they exhibit. Reported herein are studies using one of the largest macrocycles reported to date to synthesize doubly threaded [3]rotaxanes. A large ditopic 46 atom macrocycle containing two 2,6-bis(N-alkyl-benzimidazolyl)pyridine ligands has been used to synthesize several metastable doubly threaded [3]rotaxanes in high yield (65–75% isolated) via metal templating. Macrocycle and linear thread components were synthesized and self-assembled upon addition of iron(ii) ions to form the doubly threaded pseudo[3]rotaxanes that could be subsequently stoppered using azide–alkyne cycloaddition chemistry. Following demetallation with base, these doubly threaded [3]rotaxanes were fully characterized utilizing a variety of NMR spectroscopy, mass spectrometry, size-exclusion chromatography, and all-atom simulation techniques. Critical to the success of accessing a metastable [3]rotaxane with such a large macrocycle was the nature of the stopper group employed. By varying the size of the stopper group it was possible to access metastable [3]rotaxanes with stabilities in deuterated chloroform ranging from a half-life of <1 minute to ca. 6 months at room temperature potentially opening the door to interlocked materials with controllable degradation rates.

Multiple metastable doubly threaded [3]rotaxanes using a large 46 atom ring were prepared and fully characterized. Varying the stopper group size gave a range of interlocked stabilities in CDCl3 from a half-life of <1 minute to ca. 6 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号