首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
The results of numerical modeling of two-phase electrolyte thermo-and hydrodynamics in the working space of a separate electrolyzer cell with vertical electrode arrangement are presented. The problem is solved in a self-consistent formulation taking into account the electric current, Joule heat evolution, gas evolution, gas and liquid flows, and electric conductivity of the disperse phase. Within the framework of the proposed two-liquid approach, near-wall bubbly flow is calculated using a model of expanding gas plume, which is based on the introduction of an effective force acting upon the gas phase. The results of several variants of such calculations are compared. The numerical solution is also compared to approximate analytical solutions of the problem. The results of this study can be used to calculate estimations of the electrical and thermal regimes of vertical electrolyzers.  相似文献   

2.
Discharge current distributions generated underwater by spark discharges from the atmosphere to free water surfaces with conductivities in the range 0.07–10.0 S/m were investigated using a laboratory-scale electrode system consists of a discharge electrode and nine underwater grounding electrodes. Discharge emission on the water surface, which shows significant change with slight increase in conductivity, affects the current distribution in the water. The electric potential of the water surface also changes significantly with slight increase in conductivity. Results of numerical calculations of the underwater discharge current based on the water surface potential agree with the experimental results.  相似文献   

3.
SOFCs are expected to become competitive devices for electrical power generation, but successful application is dependent on decreasing working temperature from 1000 to 800 °C, without detrimental effects on resistance and on electrode processes. This requires a reduction of the stabilized zirconia electrolyte thickness and an optimization of the electrodes, especially the cathode, where losses are higher. Strontium doped lanthanum manganites are the most common materials tested as cathodes for SOFCs working at high temperature (1000 °C). This cathode material presents high electronic and oxygen-ion conductivities, a thermal expansion coefficient compatible with stabilized zirconia and good catalytic activity. For thin film SOFC devices working at intermediate temperatures (less than 800°C), we have studied the optimization of this type of cathode. Strontium doped lanthanum manganite has been deposited on yttria stabilized zirconia electrolyte substrates by spray-pyrolysis and by RF sputtering. The electrode performances depend strongly on cathode microstructure, influenced by processing conditions. With spray-pyrolysis processes, large porosity is expected. This is important for the supply of oxygen, via O2 molecules through the pores to the triple phase boundaries, where the gas, the cathode and the electrolyte are in contact and where oxygen reduction may occur. However, large porosity can have a nefaste effect on electronic conductivity. With RF sputtering, denser films with higher electronic conductivity are obtained. But, in that case, the supply of oxygen occurs via adsorbed O-atoms in a diffusion process through the cathode to the electrolyte. Spraypyrolysis and RF sputtering have been compared relative to electrode properties. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

4.
循环流化床气固曳力模型   总被引:1,自引:0,他引:1  
气固曳力是稠密气固两相流动,尤其是垂直流动中的主要作用力,相应的模型也是数值模拟中准确描述气固两相运动的关键.为了解决现有经验或半经验模型的普适性问题,合理描述流动中经常发生的颗粒团聚现象及其对气固曳力的影响,从理论分析入手,运用最小能量的概念,将传统的CFD方法与宏观的系统分析方法相结合,建立了一个新的计及颗粒团聚效应的气固曳力理论模型.与现有模型相比,新模型不仅具有相同的函数变化关系,可合理地描述气固两相相互作用的物理过程,而且避免了以往经验系数不准确导致的各种误差,为稠密气固两相流动的数值描述提供了重要依据.  相似文献   

5.
《Solid State Ionics》2006,177(19-25):1771-1777
We report IV measurements on two distinct solid electrochemical cells which both exhibit increased conductivity at high biases. We propose that this is due to the introduction of mixed ionic–electronic conductivity into the solid electrolyte near surface region, which decreases electrode over potential significantly. The decrease is attributed to an increase in the triple phase boundary area.  相似文献   

6.
Previously obtained theoretical expressions for the impedance associated with the diffusion of neutral species through a permeable electrode and along the electrode/electrolyte interface are discussed as they apply to gas electrodes on solid electrolytes. A new result, describing diffusion under circular electrode contacts, is obtained. Representative impedance-plane, admittance-plane and Bode-type plots are given for each theoretical model. The effects of rate-controlling adsorption-desorption exchange with the gas phase are considered, as is the applicability of the idealized theoretical models to irregular electrodes.  相似文献   

7.
针对采用偏心旋流二次风燃烧技术的300 MWe旋流燃烧器W火焰炉,借助1/10冷模试验台,通过三维激光颗粒动态分析仪测量研究了不同燃尽风率下其主燃区内气固流动特性。随着燃尽风率减小,拱下回流区内回流速度不断增加,且回流区尺寸不断增大。随着燃尽风率由25%减小到10%,在分级分区域,颗粒的最大竖直速度由2 m/s增大到4 m/s.燃尽风率由20.3%减小到10%,拱下回流区内气固两相竖直脉动速度明显增大,气固两相湍流强度将不断增大.在乏气和分级风区域,燃尽风率15%下最大颗粒体积流率是燃尽风率20.3%的2至2.7倍,拱上气流下冲深度明显增加.随着燃尽风率减小,下冲颗粒开始折转向上的位置被推迟,下炉膛空间利用率将不断增加.  相似文献   

8.
《Solid State Ionics》2006,177(26-32):2211-2215
It has been found that the catalytic activity and selectivity of a metal film deposited on a solid electrolyte could be enhanced dramatically and in a reversible way by applying an electrical current or potential between the metal catalyst and the counter electrode (also deposited on the electrolyte). This phenomenon is know as NEMCA [S. Bebelis, C.G. Vayenas, Journal of Catalysis, 118 (1989) 125–146.] or electrochemical promotion (EP) [J. Prichard, Nature, 343 (1990) 592.] of catalysis.Yttria-doped barium zirconate, BaZr0.9Y0.1O3  α (BZY), a known proton conductor, has been used in this study. It has been reported that proton conducting perovskites can, under the appropriate conditions, act also as oxide ion conductors. In mixed conducting systems the mechanism of conduction depends upon the gas atmosphere that to which the material is exposed. Therefore, the use of a mixed ionic (oxide ion and proton) conducting membrane as a support for a platinum catalyst may facilitate the tuning of the promotional behaviour of the catalyst by allowing the control of the conduction mechanism of the electrolyte. The conductivity of BZY under different atmospheres was measured and the presence of oxide ion conduction under the appropriate conditions was confirmed. Moreover, kinetic experiments on ethylene oxidation corroborated the findings from the conductivity measurements showing that the use of a mixed ionic conductor allows for the tuning of the reaction rate.  相似文献   

9.
A model is developed that describes the transition region between a quasineutral plasma and a planar negative electrode and in which the electron velocity distribution is represented as the sum of two Maxwellian distributions with different temperatures or as the sum of a Maxwellian distribution and distribution corresponding to an electron beam directed toward the electrode. Criteria for the formation of a sheath of positive space charge and a secondary plasma in the transition region are derived. An analysis is made of the dependence of the structure of the transition region on the parameters of the electron distribution, the space charge density distribution in the sheath, and the density of the ion current to the electrode. The criteria obtained are compared with the Bohm criterion.  相似文献   

10.
Analytical solutions for the distributions of the electric field potential and electric charge density are derived for the outer region of a steady-state unipolar corona discharge from an ideal wedge-shaped electrode under the conditions of space-charge-limited current. Two situations are considered: a corona is initiated only from the edge of the wedge and from the entire surface of the electrode. In the former case, general solutions are obtained by sewing together exact cylindrically symmetric solutions in the drift space and plane symmetric solutions in space-charge-free regions. In the latter case, the field distribution near the edge turns out to be self-similar, i.e., invariant under extensions in the cross-sectional plane of the wedge, with the center at the top of the wedge. For both models, the dependences of the saturation current per edge’s unit length on the apex angle and applied potential difference are obtained.  相似文献   

11.
应用流体动力学、传质学和电化学理论,建立三维电解槽二元电解质溶液湍流运动的物理和数学模型,针对Butler-Volmer定律下极限电流和恒电流两种情况,通过直接数值模拟研究电解质溶液传质和运动特性,分析不同Schmidt数对电解质溶液平均浓度和脉动浓度的影响,考察湍流的脉动量控制电沉积的过程规律.对瞬时脉动浓度云图的分析可知,在高Schmidt数下脉动浓度拟序结构间距密集,且集中在壁面附近,表明高Schmidt数下传质过程主要由近电极处薄层内的流动行为所主导.  相似文献   

12.
A microfluidic double channel device is employed to study reactions at flowing liquid–liquid junctions in contact with a boron‐doped diamond (BDD) working electrode. The rectangular flow cell is calibrated for both single‐phase liquid flow and biphasic liquid–liquid flow for the case of (i) the immiscible N‐octyl‐2‐pyrrolidone (NOP)–aqueous electrolyte system and (ii) the immiscible acetonitrile–aqueous electrolyte system. The influence of flow speed and liquid viscosity on the position of the phase boundary and mass transport‐controlled limiting currents are examined. In contrast to the NOP–aqueous electrolyte case, the acetonitrile–aqueous electrolyte system is shown to behave close to ideal without ‘undercutting’ of the organic phase under the aqueous phase. The limiting current for three‐phase boundary reactions is only weakly dependent on flow rate but directly proportional to the concentration and the diffusion coefficient in the organic phase. Acetonitrile as a commonly employed synthetic solvent is shown here to allow effective three‐phase boundary processes to occur due to a lower viscosity enabling faster diffusion. N‐butylferrocene is shown to be oxidised at the acetonitrile–aqueous electrolyte interface about 12 times faster when compared with the same process at the NOP–aqueous electrolyte interface. Conditions suitable for clean two‐phase electrosynthetic processes without intentionally added supporting electrolyte in the organic phase are proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
C. Schwandt  W. Weppner 《Ionics》1996,2(2):113-122
The polarization behaviour of electrodes of the type “oxygen, noble metal / stabilized zirconia”, comprising different zirconia-based materials as electrolyte, platinum or gold as metal component and an oxygen containing gas atmosphere, was investigated at elevated temperatures under equilibrium and non-equilibrium conditions by means of impedance spectroscopy. Massive metal contacts were used as part of the working electrodes. Under non-polarized conditions, the experimental results for platinum indicate a basically uniform reaction mechanism in a vast range of temperature and oxygen partial pressure, involving the surface diffusion of dissociatively adsorbed oxygen on platinum towards the electrochemical reaction sites on the electrolyte surface as rate-determining step. The experimental findings for gold are consistent with the occurrence of two competing reaction mechanisms, namely a charge transfer controlled process and a surface diffusion controlled process, each of them prevailing in different regimes of temperature and oxygen partial pressure. Under polarized conditions, a significant decrease of the polarization resistance takes place, followed by the onset of low frequency loops in the impedance spectra. In the case of cathodic polarization, the onset voltage can be correlated with the partial electron conductivity of the electrolyte, thus confirming the hypothesis of direct participation of electronic species of the electrolyte in the electrode reaction under biased conditions. At moderate temperatures, the polarization induced changes in the electrode properties exhibit a slow relaxation behaviour. This can be attributed to the successive annihilation of additional metastable electrochemical reaction sites having been created during the preceding polarization treatment. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy  相似文献   

14.
Corona discharge is a self-sustained discharge which appears at electrodes with a small radius curvature in gas insulation. An almost invisible glow occurs just above the inception voltage. Corona phenomenon is mainly used in electro-technological processes to obtain space charge for electrostatic precipitation, separation of different particles, electrostatic liquid or solid coating, neutralization of space charge, etc. All of these processes rely on a strong nonhomogeneous electric field generated by a point – plate electrode system. When the critical value of the applied voltage is reached, the ionization processes near the point electrode start and give rise to the current between two electrodes. If the pointed electrode is positive, it is possible to observe an anomaly of the current – voltage (I-U) characteristic for the point-plate space. It means that while the voltage is raising the current density decreases in a narrow voltage area (2–3 kV). The anomaly was technically named as negative differential conductivity (dI/dU < 0). Unstable current can have a negative influence on electro-technological processes. The anomaly was detected for different shapes and materials of the electrode as well as for various temperatures and distances between electrodes. An oxidation layer, which appears on the metal electrode, also influences the ionization processes near the pointed electrode and causes a decrease of a current. In this paper measuring of the discharge activity in a point – plate electrode system is presented. Ionization of gas atoms and molecules in a high electric field and the following recombination of electrons and positive ions in the corona region can give rise to high-energy photons which produce new electrons in the field of discharge. Corona discharges are detected by DayCor Corona camera which can register UV emission generated by corona in a day light. The experiment was conducted with various shapes of the pointed electrode and distances between the high voltage and the grounded electrode under applied direct voltage with positive and negative polarity.  相似文献   

15.
In the paper we present the results of an investigation of a low frequency (30-100 kHz) instability in a weakly magnetized discharge plasma. The instability is triggered by a disc electrode which terminates the magnetized plasma column and is biased above the plasma potential. Frequency dependence on various parameters, e.g. electrode diameter, electrode bias, neutral gas pressure and plasma density is measured. Space and time dependence of the plasma potential and density in the perturbed region during one period of the electrode current oscillation are measured. During the phase of the current decrease a potential structure moves in axial direction from the edge of the perturbed region towards the electrode. During the phase of current saturation the motion of ions is mostly radial. The observed phenomenon is approximately modeled as a two dimensional potential relaxation instability (PRI).  相似文献   

16.
M. Rösch  G. Reinhardt 《Ionics》2001,7(1-2):53-58
Silver electrode layers of different porosity on yttrium stabilized zirconia (YSZ) were investigated by X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS resp.). By applying different potentials in a three electrode arrangement oxygen could be transported from a gaseous reservoir to the working electrode. The change in the work function of the working electrode as a function of applied potentials was monitored by UPS. It showed significant different behavior for dense and porous silver electrodes. On a dense silver electrode a change in work function of up to 0.6 eV was observed at potentials at which a considerable current passed through the electrolyte. In the UP spectra of the valence band an additional structure appeared at a binding energy of 3.3 eV. These changes were also reflected in the appearance of oxygen O 1s signals in the XP spectra at 529 eV assigned to subsurface oxygen. On a porous silver electrode the work function at equilibrium (open circuit) was higher than that of metallic silver and increased linearly with increasing potential, although yet no current through the electrolyte could be observed. With the onset of considerable currents at larger anodic potentials the work function increase became stronger. As reason for the linear increase of the measured work function contributions of the solid electrolyte YSZ are considered. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

17.
Numerical model and procedure are developed to study the output optical performance of light-emitting diode (LED) in which injected current is spatially modulated by mesh-like top metal electrode. The mesh strips have rectangular crossection as in realistic LEDs. The finite element method is applied to obtain three-dimensional distributions of electric potential which are incorporated in the equations for total output power. The numerical procedure is applied to evaluate LED’s total output optical power at different geometric parameters of the electrode: the mesh pitch, the width, and the height of the top mesh-like electrodes. Modeling results demonstrate the effect of mesh pitch variation on the output optical power. In particular, at a certain value of the mesh pitch maximum total output optical power is revealed. The presented approach can be used in the optimization of the LEDs with designed metal electrodes.  相似文献   

18.
Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by coupling magnetic field, phase field, continuity equation, and momentum equation. Using the phase field method to capture the interface of two phases, the geometric deformation and dynamics of a pair of coaxial vertical rising bubbles under the applied uniform magnetic field in the vertical direction were investigated. The correctness of results is verified by mass conservation method and the comparison of the existing results. The results show that the applied uniform magnetic field can effectively shorten the distance between the leading bubble and the trailing bubble, the time of bubbles coalescence, and increase the velocity of bubbles coalescence. Within a certain range, as the intensity of the applied uniform magnetic field increases, the velocity of bubbles coalescence is proportional to the intensity of the magnetic field, and the time of bubbles coalescence is inversely proportional to the intensity of the magnetic field.  相似文献   

19.
庞辉 《物理学报》2017,66(23):238801-238801
锂离子电池的精确建模和状态估计对于电动汽车电池管理系统非常重要,准二维(P2D)电化学模型由于计算复杂,难以直接应用于电池管理的参数在线估计和实时控制中.本文基于多孔电极理论和浓度理论,提出一种考虑锂离子液相动力学的简化准二维(SP2D)模型.忽略锂离子孔壁流量沿电极厚度方向的变化求解SP2D模型所描述的锂离子电池锂浓度分布,基于锂离子电池电化学平均动力学行为求解固相和液相电势变化,推导出电池电压计算的简化表达式;采用恒流、脉冲以及城市循环工况放电电流对比分析了严格P2D模型与SP2D模型的终端电压和浓度分布.结果表明:SP2D模型在保持较高计算精度的同时,可显著提高计算效率.  相似文献   

20.
双钨极耦合电弧数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
王新鑫  樊丁  黄健康  黄勇 《物理学报》2013,62(22):228101-228101
基于流体力学方程组和麦克斯韦方程组, 在合理的边界条件下, 建立了双钨极耦合电弧三维准静态数学模型. 通过对方程组的迭代求解, 获得了不同钨极间距和电弧长度下耦合电弧的温度场、流场、电弧压力和电流密度分布等重要结果, 与已有的实验研究符合良好. 模拟结果表明: 与相同条件下的钨极惰性气体保护焊电弧相比, 双钨极耦合电弧的最高温度和最大等离子流速较低, 阳极表面电弧压力和电流密度峰值明显减小; 钨极间距和弧长对耦合电弧的温度场、流场、电流密度和电弧压力等都具有显著的影响, 且耦合电弧阳极的电弧压力和电流密度分布不能用高斯近似进行描述. 关键词: 耦合电弧 三维模型 数值模拟  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号