首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
童中华  蒋持平 《力学学报》2003,35(5):610-614
研究压电材料双周期裂纹反平面剪切与平面电场作用的问题.运用复变函数方法,获得了该问题严格的闭合解,并由此给出了裂纹尖端应力强度因子和电位移强度因子的精确公式.数值算例显示了裂纹分布特征对材料断裂行为的重要影响.叠间小裂纹能够对主裂纹的应力和电位移场起着屏蔽作用,相反行间小裂纹却起着放大作用,至于钻石形分布裂纹的影响规律则更为复杂.对于某些特殊情形给予了解答并导出一系列有意义的结果。  相似文献   

2.
This research is concerned with the fracture mechanics of a laminated composite medium, which contains a central layer sandwiched by two outer layers. There is a periodic array of cracks in the central layer along the central axis of the medium. Fourier transform is used to reduce the problem to the solution of a system of dual integral equations, which are solved by the singular integral equation technique. Rigorous fracture mechanics analysis, which exactly satisfies all boundary conditions of the problem, is conducted. Numerical solutions for the crack tip field and the stress in the medium are obtained for various values such as crack length, crack spacing and layer thickness. Results are also given for the reduction of the equivalent Young’s modulus of the laminate due to multiple cracking. The cases of axial extension and residual temperature change of the composite medium are accounted for.  相似文献   

3.
A boundary integral equation method is applied to the study of the interaction of plane elastic waves with a periodic array of collinear inplane cracks. Numerical results are presented for the dynamic stress intensity factors. The effects of the wave type, wave frequency, wave incidence angle, and crack spacing on the dynamic stress intensity factors are analyzed in detail. The project supported by the Committee of Science and Technology of Shanghai and Tongji University  相似文献   

4.
本文研究了面内电磁势载荷作用下双层压电压磁复合材料中共线界面裂纹问题.考虑了压电材料的导磁性质和压磁材料的介电性质,引入了界面电位移和磁感强度的连续性条件.利用Fourier 变换得到一组第二类Cauchy 型奇异积分方程.进一步导出了相应问题的应力强度因子、电位移强度因子和磁感强度强度因子的表达式,给出了应力强度因子的数值结果.结果表明电磁载荷会导致界面裂纹尖端I、II 混合型应力奇异性,同时还伴随着电位移和磁感强度的奇异性.比较了双裂纹左右端的应力强度因子,发现在面内极化方向上施加面内磁势载荷时共线裂纹内侧尖端区域的两个法向应力场发生互相干涉增强.  相似文献   

5.
The non-singular and bounded terms for the stresses near the crack tip are investigated. This paper deals with the multiple crack problem for an infinite plate. The original problem is decomposed into three elementary subproblems: (1) the problem for remote uniform stress filed without cracks; (2) the single crack problem with traction applied along the crack face and (3) the problem for the influence of the other cracks. Several examples for collinear and non-collinear cracks are discussed and the results are shown.  相似文献   

6.
Many important applications of crack mechanics involve self-equilibrating residual or thermal stress fields. For these types of problems, the traditional fracture mechanics approach based on the superposition principle has ignored the effect of crack surface contact when the crack-tip propagates into the residual compressive region. Contact between the crack faces and the wedging action are responsible for subsequent crack-tip reopening, which often leads to a much larger mode I stress intensity factor. In this study, an analytical approach is used to study the effect of crack face contact for a period array of collinear cracks embedded in several typical residual stress fields. It is found that the nonlinear contact between crack surfaces dominates the cracking behavior in residual/thermal stress fields, which is responsible for crack coalescence.  相似文献   

7.
The problem of collinear periodic cracks in an infinite piezoelectric body is studied. Effect of saturation strips at the crack-tips is taken into account. By means of the Stroh formalism and the conformal mapping technique, the general periodic solutions for collinear cracks are obtained. The stress intensity factors and the size of saturation strips are derived analytically, and their dependencies on the ratio of the periodicity on the half-length of the crack are analyzed in detail. Numerical results show the following two facts. (1) When h/l>4.0, the stress intensity factors become almost identical to those of a single crack in an infinite piezoelectric body. This indicates that the interaction between cracks can be ignored in establishing the criterion for the crack initiation in this case. (2) The speed of the saturation strip size of periodic cracks approaching that of a single crack depends on the electric load applied at infinity. In general, a large electric load at infinity is associated with a slow approaching speed.  相似文献   

8.
In this paper we develop closed form solutions for anti-plane mechanical and in-plane electric and magnetic fields for two collinear cracks in magneto-electro-elastic layer of finite thickness under the conditions of permeable crack faces using integral transform method. The anti-plane mechanical shear or displacement and in-plane electrical and magnetic loading are applied to the top and bottom surfaces of the layer for the two cases considered. Expressions for shear stresses, electric displacements and magnetic inductions in the vicinity of the cracks are derived as well as intensity factors for two cracks in magneto-electro-elastic layer. Numerical results for stress intensity factors and energy release rate are shown graphically.  相似文献   

9.
A periodic array of cracks in an elastic coating bonded to a homogeneous substrate is considered. The medium is subjected to mechanical loads and/or thermal loads. The problem is formulated in terms of a singular integral equation with the crack face displacement as the unknown variable. In addition to the time-varying stress intensity factors and stresses for various parameters of the problem, the effect of periodic cracking on the relaxation of the transient stress on the coating surface is discussed. Solution techniques for a single elastic layer and an elastic coating bonded to an infinite substrate are given. It is found that, if the crack density attains a saturation value, the transient thermal stress in the medium could be released significantly, suggesting that further cracking is difficult.  相似文献   

10.
This paper investigates the dynamic behaviour of a piezoelectric laminate containing multiple interfacial collinear cracks subjected to steady-state electro-mechanical loads. Both the permeable and impermeable boundary conditions are examined and discussed. Based on the use of integral transform techniques, the problem is reduced to a set of singular integral equations, which can be solved using Chebyshev polynomial expansions. Numerical results are provided to show the effect of the geometry of interacting collinear cracks, the applied electric fields, the electric boundary conditions along the crack faces and the loading frequency on the resulting dynamic stress intensity and electric displacement intensity factors.  相似文献   

11.
Orthotropic materials weakened by a doubly periodic array of cracks under far-field antiplane shear are investigated, where the fundamental cell contains four cracks of unequal size. By applying the mapping technique, the elliptical function theory and the theory of analytical function boundary value problems, a closed form solution of the whole-field stress is obtained. The exact formulae for the stress intensity factor at the crack tip and the effective antiplane shear modulus of the cracked orthotropic material are derived. A comparison with the finite element method shows the efficiency and accuracy of the present method. Several illustrative examples are provided, and an interesting phenomenon is observed, that is, the stress intensity factor and the dimensionless effective modulus are independent of the material property for a doubly periodic cracked isotropic material, but depend strongly on the material property for the doubly periodic cracked orthotropic material. Such a phenomenon for antiplane problems is similar to that for in-plane problems. The present solution can provide benchmark results for other numerical and approximate methods.  相似文献   

12.
两种各向异性材料界面共线裂纹的反平面问题   总被引:2,自引:1,他引:2  
本文研究两种各向异性材料界面共线裂纹的反平面剪切问题。利用复变函数方法,提出了一般问题公式和某些实际重要问题的封闭形式解。考察了裂纹尖端附近的应力分布并给出了应力强度因子公式。从本文解签的特殊情形,可以直接导出两种各向同性材料界面裂纹,均匀各向异性材料共线裂纹以及均匀各向同性材料共线裂纹的相应问题公式,其中包括已有的经典结果。  相似文献   

13.
研究双周期裂纹和刚性线夹杂非均匀材料的反平面剪切问题。基于保角变换技术和椭圆函数理论,获得了问题应力场的全场精确解,给出了裂纹和刚性线尖端应力强度因子的封闭形式解答,讨论了裂纹和刚性线尖端场的干涉效应。数值结果表明:改变水平和垂直分布周期对裂纹和刚性线尖端场影响明显不同;裂纹长度2a逐渐增大时(0≤a/ω1≤0.5),裂纹尖端应力强度因子从1逐渐增大到无限大,而刚性线的尖端场变化不大;刚性线长度2d逐渐增大时(0≤d/ω2≤1),刚性线尖端应力强度因子逐渐减小,而裂纹的尖端场仅略微增大。  相似文献   

14.
提出了双周期平行四边形排列裂纹反平面问题的有限元方法,通过对单位胞元引入周期边界条件,在裂纹尖端采用奇异单元,解决了有限元分析这类问题的效率和精度问题.利用Ansys软件计算,在各种有解析解对照的情形下,应力强度因子的相对误差都在0.2%以内.与现有通常限于对称阵列的双周期裂纹的研究相比,本文发展的方法适用于一般的非对称平行四边形裂纹阵列.算例揭示了行向裂纹间的相互干涉放大应力强度因子,而叠向裂纹间的作用相互屏蔽.对于平行四边形阵列的情形,这两种相反的干涉效应使应力强度因子与裂纹错动参数间呈现非单调依赖关系.  相似文献   

15.
16.
孔边裂纹对SH波的散射及其动应力强度因子   总被引:14,自引:1,他引:14  
刘殿魁  刘宏伟 《力学学报》1999,31(3):292-299
采用Green函数法研究任意有限长度的孔边裂纹对SH波的散射和裂纹尖端场动应力强度因子的求解.取含有半圆形缺口的弹性半空间水平表面上任意一点承受时间谐和的出平面线源荷载作用时位移函数的基本解作为Green函数,采用裂纹“切割”方法并根据连接条件建立起问题的定解积分方程,得到动应力强度因子的封闭解答.最后给出了孔边裂纹动应力强度因子的算例和结果,并讨论了圆孔的存在对动应力强度因子的影响  相似文献   

17.
宋天舒  李冬 《力学学报》2010,42(6):1219
采用Green函数法研究界面上含圆孔边界径向有限长度裂纹的两半无限压电材料对SH波的散射和裂纹尖端动应力强度因子问题.首先构造出具有半圆型凹陷半空间的位移Green函数和电场Green函数,然后采用裂纹"切割"方法构造孔边裂纹,并根据契合思想和界面上的连接条件建立起求解问题的定解积分方程.最后作为算例,给出了孔边界面裂纹尖端动应力强度因子的计算结果图并进行了讨论.  相似文献   

18.
Dynamic stresses are obtained for an infinite orthotropic medium weakened by two collinear cracks. Time-harmonic elastic waves are interrupted at normal incidence by the line cracks. Fourier transform is applied reducing the problem to solving a pair of dual integral equations. Solution method involves expanding the crack surface displacement in a series of functions that vanish along a collinear line outside the cracks. The unknown coefficients in the series are evaluated by using the Schmidt method. Dynamic stress intensity factors are computed and displayed graphically for an orthotropic medium that corresponds to the elastic properties of boron-epoxy composite.  相似文献   

19.
The variation of stress field around an oscillating crack tip in a quenched thin glass plate is observed using instantaneous phase-stepping photoelasticity. The successive images around the propagating crack are recorded by a CCD camera that is equipped with a pixelated micro-retarder array. Then, the phase maps of the principal stress difference and the principal direction are easily obtained even though the photoelastic fringes cannot be visualized. The path of the crack growth as well as the stress intensity factors and the crack tip constraint are obtained from these phase distributions. Results show that the mode I stress intensity factor and the crack tip constraint vary remarkably with the crack growth. In addition, the results show that the mode-II stress intensity factor exists even though the crack propagates smoothly.  相似文献   

20.
本文研究了由各向同性和各向异性半无限接合而成的复合材料中的应力强度因子问题,在复合材料的接合面附近处具有与接合面平行且共线的两个Griffith裂纹,裂纹面上作用有剪应力,本文利用付利叶变换将混合边值问题归毕为求解奇异积分方程问题,为求解这些方程,将裂纹面上,下的位移差展成级数,并满足理解纹面外侧边界条件,级数中的待定系数利用裂纹面内的边界条件和施密特方法求得,本文对硼纤维塑料和铝板接合的复合材料  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号