首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The human retinal pigment epithelial (RPE) layer contains a complex mixture of components called lipofuscin; this mixture forms with age and with various genetic disorders such as Stargardt's disease. Its presence may contribute to retinal deterioration via several mechanisms including photochemical processes. In the lipofuscin mixture, both type I and II mechanisms have been identified, with the latter consisting of the generation of singlet oxygen. Several components of that mixture have been identified, most notably a bis-retinoid pyridinium compound called A2E and its derivatives. Photo-oxidative studies on the compound A2E have revealed that its dominant photochemical mechanism is via free radical or type I processes. Because singlet oxygen is an important photooxidative intermediate in tissue, its generation in the RPE may contribute to retinal maculopathies. It is therefore necessary to determine which specific component(s) in the lipofuscin mixture produce singlet oxygen upon excitation with light. This was ascertained by evaluating the action spectrum for singlet oxygen production for the whole lipofuscin mixture using time-resolved spectroscopy. Singlet oxygen was generated by excitation of the sample at different wavelengths while maintaining a constant beam energy, and was directly detected by its phosphorescence decay at 1270 nm using a Ge photodiode. The action spectrum for singlet oxygen sensitization by the organic soluble portion of lipofuscin had an absorption maximum at ca 380 nm, which is to the blue of A2E (maximum at 430 nm). Compounds with a similar absorption maximum eluted in the HPLC earlier than A2E and were detected in human lipofuscin. The concentration of this component apparently increased in concentration in human RPE lipofuscin mixture as a function of age up to 90 years old.  相似文献   

2.
The pathological processes involved in age-related macular degeneration (AMD) include retinal pigment epithelial (RPE) cell degeneration; oxidative mechanisms likely contribute to the demise of these cells. Indeed, RPE cells may be particularly susceptible to photooxidative mechanisms since they accumulate retinoid-derived photoreactive compounds that constitute the lipofuscin of the cell. Thus we undertook to test the capacity of OT-674, the reduction product (Tempol-H) of the nitroxide Tempol, to suppress photooxidative processes initiated by the RPE lipofuscin fluorophore A2E. Accordingly, when ARPE-19 cells that had accumulated A2E were irradiated at 430 nm, pretreatment with OT-674 (0.01-10 mM) was found to confer a resistance to cell death. Monitoring by quantitative HPLC also showed that OT-674 reduced A2E photooxidation in a cell-free system. Moreover, when presented with a singlet oxygen generator, OT-674 served as a quencher of singlet oxygen that was more effective than Trolox and alpha-tocopherol. We conclude that OT-674 is a potent antioxidant that suppresses photooxidative processes generated in cultured RPE cells by the lipofuscin fluorophore A2E. As oxidative damage to RPE cells is considered to be a risk factor for AMD, antioxidant therapy with OT-674 may serve a protective role.  相似文献   

3.
THE PHOTOCHEMISTRY OF HUMAN RETINAL LIPOFUSCIN AS STUDIED BY EPR   总被引:1,自引:0,他引:1  
Fluorescent material generated in the human retina accumulates within lipofuscin (HLF) granules of the retinal pigment epithelium (RPE) during aging. We have been investigating the possible light-induced contribution of these fluorophores to various diseases including age-related macular degeneration. Our studies have shown that some of the fluorescent components of HLF are products of the reaction of retinaldehyde with ethanolamine and that synthetic mixtures of this reaction can serve as a useful model for photophysical studies. Previous research by us has demonstrated that irradiation of either natural or synthetic lipofuscin resulted in the formation of a triplet state and possibly a free radical. Here EPR studies were performed to verify the formation of that radical. The UV irradiation of either synthetic or natural human retinal lipofuscin extracts in oxygen-free methanol led to the formation of a 5,5-dimethylpyrroline-N-oxide (DMPO) spin-trapped carbon-centered radical resulting from either hydrogen atom or electron abstraction from solvent molecules. In the presence of oxygen superoxide was formed, which was observed as a DMPO adduct. It is concluded that certain components of the chloroform-soluble fluorophores of human RPE lipofuscin granules and the fluorescent reaction products of retinaldehyde and ethanolamine are photophysically similar but not the same. Electron or hydrogen abstraction from a substrate by these fluorophores in vivo and the resulting radical products may contribute to the age-related decline of RPE function and blue light damage in the retina.  相似文献   

4.
With age, human retinal pigment epithelial cells accumulate lipofuscin that can absorb photons in the visible range leading to light-induced damage and impaired vision. A putative precursor of lipofuscin, 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E, 5E,7E- octatetraenyl]-1-(2-hydroxyethyl)-4-[4-methyl-6-(2,6,6-trimethyl-1 - cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2-E), has recently been isolated and characterized from aged human retinal pigment epithelial cells. We have found that A2-E inhibits the growth of human retinal pigment epithelial cells at concentrations greater than 1 microM. Time-resolved fluorescence measurements of 1 microM A2-E in solution, performed under 413 nm excitation, showed that fluorescence wave forms integrated across the spectrum (450-600 nm) were best-fitted with three decay times in the nanosecond and subnanosecond time scale: 6.6, 1.9 and 0.33 ns. Untreated retinal pigment epithelial cells were characterized by three fluorescence lifetimes: 6.3, 1.7 and 0.35 ns. In retinal pigment epithelial cells treated with 1 microM A2-E, the fluorescence decay was significantly faster, with the marked presence (approximately equal to 30%) of a fourth short lifetime (0.12 ns). These fluorescence decay times for A2-E bound to human retinal pigment epithelial cells are similar to those of lipofuscin granules isolated from aged human retinal pigment epithelial cells. This similarity supports the hypothesis that A2-E is a precursor of lipofuscin and suggests that A2-E may play a role in the overall light damage associated with age-related retinal diseases.  相似文献   

5.
Singlet molecular oxygen is a reactive species involved in biological oxidative processes. The major cellular targets of singlet molecular oxygen are unsaturated fatty acids in the membrane, as well as nucleic acids and proteins. The aim of this study was to investigate whether lipids and commercial hydroperoxides generate singlet molecular oxygen, in presence of nitronium and activated nitronium ion. For this purpose, monomol light emitted in the near-infrared region (λ = 1270 nm) was used to monitor singlet molecular oxygen decay in different solvents, with different hydroperoxides and in the presence of azide. Direct measurements of the singlet molecular oxygen spectrum at 1270 nm recorded during the reaction between lipids and commercial hydroperoxides and nitronium ions unequivocally demonstrated the formation of this excited species.  相似文献   

6.
The absorption and fluorescence of 16-(1-pyrene)-hexadecanoicacid adsorbed on silica have been investigated. Time-resolved transient diffuse reflectance spectra were recorded following pulsed nanosecond laser excitation at 355 nm of pyrene, 1-methylpyrene and 16-(1-pyrene)-hexadecanoicacid adsorbed on silica. In addition to a rapidly decaying transient, absorbing at 420 nm assigned as the triplet state, and of the radical cation, absorbing at 460 nm, another long living transient species absorbing at 420 nm was observed for 16-(1-pyrene)-hexadecanoic acid. The decay is reversible but complete recovery takes several hours. Although no definitive assignment could be made for this transient several possibilities are discussed. The radical cations of the investigated molecules are formed by a biphotonic process. The non-exponential decay of the radical cations could be analyzed in the framework of a Gaussian distribution of free energy barriers.  相似文献   

7.
Both the neurotransmitter serotonin and the unnatural amino acid 5-hydroxytryptophan (5HT), contain the 5-hydroxyindole chromophore. The photochemistry of 5HT is being investigated in relation to the multiphoton excitation of this chromophore to produce a characteristic photoproduct with green fluorescence ('hyperluminescence'). Laser flash photolysis (308 nm) of 5HT in aqueous solution at neutral pH produces both the neutral 5-indoloxyl radical (lambda(max) 400-420 nm) and another transient absorption with lambda(max) 480 nm and lifetime of 2 micros in deaerated solutions. Based on quenching by oxygen and beta-carotene, the species at 480 nm is identified as the triplet excited state of 5HT. In acidic solution a new oxygen-insensitive intermediate with lambda(max) 460 is assigned to the radical cation of 5HT. Time-resolved measurements of luminescence at 1270 nm have shown that the triplet state of 5HT is able to react with oxygen to form singlet excited oxygen (1O2*) with a quantum yield of approximately 0.1. However, 5HT has also been found to be an effective quencher of singlet oxygen with a second order rate constant of 1.3 x 10(8) dm3 mol(-1) s(-1). The results are discussed in the light of recent observations on the multiphoton-excited photochemistry of serotonin.  相似文献   

8.
Direct measurements of the decay of singlet oxygen phosphorescence at 1270 nm were made in human plasma diluted with various amounts of deuterium oxide. The Stern-Volmer plot of the singlet oxygen lifetimes was linear up to 15% plasma concentration (vol/vol). Extrapolation of these measurements to 100% plasma content gave a singlet oxygen lifetime of 1.04 +/- 0.03 microseconds in human plasma. Biological molecules accounted for 77% of the total singlet oxygen quenching while water accounted for 23% of the quenching. The contributions of various types of biological molecules to the total singlet oxygen quenching were calculated from their plasma concentrations and their quenching constants. Plasma proteins quenched most of the singlet oxygen. Uric acid also quenched a significant amount of singlet oxygen (12%). Tocopherols, carotenoids, ascorbic acid and bilirubin made only small contributions to the total singlet oxygen quenching (less than or equal to 4%).  相似文献   

9.
Throughout the lifetime of an individual, light is focused onto the retina. The resulting photooxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration (AMD), the leading cause of legal blindness in the developed world, involves oxidative stress and death of the retinal pigment epithelium (RPE) followed by death of the overlying photoreceptors. Evidence suggests that damage due to exposure to light plays a role in AMD and other age-related eye diseases. In this work a system for light-induced damage and death of the RPE, based on the human ARPE-19 cell line, was used. Induction of mitochondria-derived reactive oxygen species (ROS) is shown to play a critical role in the death of cells exposed to short-wavelength blue light (425 +/- 20 nm). ROS and cell death are blocked either by inhibiting the mitochondrial electron transport chain or by mitochondria-specific antioxidants. These results show that mitochondria are an important source of toxic oxygen radicals in blue light-exposed RPE cells and may indicate new approaches for treating AMD using mitochondria-targeted antioxidants.  相似文献   

10.
Several retinal dystrophies are associated with the accumulation of lipofuscin, a pigment mixture, in the retinal pigment epithelium (RPE). One of the major fluorophores of this mixture has been identified as the bis-retinoid pyridinium compound, A2-E. Because this compound absorbs incident radiation that is transmitted by the anterior segment of the human eye, photophysical and photochemical studies were performed to determine if A2-E could photosensitize potentially damaging reactions. Steady-state fluorescence measurements indicate that the fluorescence emission maximum and quantum yield are very sensitive to the chemical environment and a correlation between these two parameters and the solvent dielectric constant is observed. Time-resolved absorption experiments of A2-E in pure organic solvents showed no formation of transient species on the timescale of our experiments. However, when these measurements were repeated for A2-E in Triton X-100 micelles, a short-lived (tau approximately 14 microseconds), weak absorption was observed. This species is quenched by oxygen (k = 2 x 10(9) M-1 s-1) and by the addition of the antioxidants, cysteine and N,N,N',N'-tetramethylphenylenediamine. Quenching of this species by 2,3,5-trimethylhydroquinone results in the formation of the 2,3,5-trimethylsemiquinone free radical and an increase in yield of the A2-E-derived species. Sensitization of the A2-E triplet excited state indicates that the species observed in micelles upon direct excitation is not consistent with the triplet excited state. Based on these data we tentatively assign this absorption to a free radical. In the RPE these initial processes can ultimately lead to damage to the tissue through the formation of peroxides and other oxidized species.  相似文献   

11.
Abstract— Time-resolved measurements of 1270 nm singlet-oxygen emission following pulsed-laser excitation were made from unilamellar dimyristoyl 1-α-phosphatidylcholine liposomes labeled with zinc phthalocyanine. The effect of the hydrophobic quenchers, β-carotene and ethyl β-apo-8' trans carotenoate, and the hydrophilic quenchers, histidine and methionine, upon the kinetics of the 1270 nm singlet-oxygen emission was studied. Hydrophobic quenchers principally lowered the intensity of the 1270 nm emission and caused only modest changes in the lifetime of the 1270 nm emission. The decrease in 1270 nm emission caused by hydrophobic quenchers was related to the size of the liposomes. The larger the radius of the liposome, the greater the decrease in 1270 nm emission caused by a given concentration of hydrophobic quencher. In contrast, hydrophilic quenchers principally decreased the lifetime of the 1270 nm emission. The effect of hydrophilic quenchers was independent of the size of the liposomes.
There was good agreement between the experimental results and the kinetics of the singlet-oxygen emission calculated using a one dimensional model of singlet-oxygen quenching and diffusion. The kinetics of singlet-oxygen emission from liposomes without added hydrophobic quenchers closely approximated the theoretical kinetics of singlet oxygen in a homogeneous aqueous solution.  相似文献   

12.
After the generation by different photosensitizers, the direct detection of singlet oxygen is performed by measuring its luminescence at 1270 nm. Using an infrared sensitive photomultiplier, the complete rise and decay time of singlet oxygen luminescence is measured at different concentrations of a photosensitizer, quencher, or oxygen. This allows the extraction of important information about the photosensitized generation of singlet oxygen and its decay, in particular at different oxygen concentrations. Based on theoretical considerations all important relaxation rates and rate constants were determined for the triplet T(1) states of the photosensitizers and for singlet oxygen. In particular, depending on the oxygen or quencher concentration, the rise or the decay time of the luminescence signal exhibit different meanings regarding the lifetime of singlet oxygen or triplet T(1)-state. To compare with theory, singlet oxygen was generated by nine different photosensitizers dissolved in either H2O, D2O or EtOD. When using H2O as solvent, the decaying part of the luminescence signal is frequently not the lifetime of singlet oxygen, in particular at low oxygen concentration. Since cells show low oxygen concentrations, this must have an impact when looking at singlet oxygen detection in vitro or in vivo.  相似文献   

13.
Antioxidant properties of melanin in retinal pigment epithelial cells   总被引:7,自引:0,他引:7  
The retinal pigment epithelium (RPE) is a monolayer of highly pigmented cells lining the inner aspect of Bruch's membrane. This pigmentation is due to eumelanin and a possible antioxidant role of melanin is reported here. The photo-oxidation of A2E, a constituent of RPE lipofuscin, leads to the sequential addition of up to nine oxygen atoms and/or the addition or loss of two hydrogen atoms. These photo-oxidations were investigated in the presence and absence of either calf or human RPE melanin in A2E-laden RPE cells. It was found that calf melanin was protective against the photo-oxidation of A2E, with an inhibition of oxidation of up to 50% in the case of the addition of two oxygen atoms. Calf melanin was also protective against blue light-induced damage to RPE cells. In addition this ability appears to decrease in humans as they grow older. With aging, a melanin-lipofuscin complex called melanolipofuscin forms. It is suggested that the oxidation or photo-oxidation of A2E in vivo may contribute to the age-related deterioration of the anti-oxidant role of RPE melanin and lead to various retinal disorders, such as age-related macular degeneration.  相似文献   

14.
Lipofuscin is a fluorescent material with significant phototoxic potential that accumulates with age in the retinal pigment epithelium (RPE) of the eye. It is thought to be a factor in retinal degeneration diseases. The most extensively characterized lipofuscin component, N‐retinylidene‐N‐retinylethanolamine (A2E), has been proposed to be a byproduct of reactions involving the visual pigment chromophore. To examine the impact of the visual pigment and photoreceptor cell type on lipofuscin accumulation, we analyzed the RPE from Nrl?/? mice of various ages for lipofuscin fluorescence and A2E levels. The photoreceptor cells of the Nrl?/? retina contain only cone‐like pigments, and produce cone‐like responses to photostimulation. The cone‐like nature of these cells was confirmed by the presence of RPE65. Lipofuscin was measured with fluorescence imaging, whereas A2E was quantified by UV/VIS absorbance spectroscopy coupled to HPLC. The identity of A2E was corroborated with tandem mass spectrometry. Lipofuscin and A2E accumulated with age, albeit to lower levels compared with wild type mice. The emission spectra of RPE lipofuscin granules from Nrl?/? mice were similar to those from wild type mice, with λmaxca 610 nm. These results demonstrate that cone visual pigments can contribute to the production of lipofuscin and A2E.  相似文献   

15.
The retina and retinal pigment epithelium contain a number of retinoids in a metabolic pathway that eventually forms the visual pigments. This study investigates the photochemistry of those retinoids that may contribute to light-induced damage to the retina. These include retinal (RAL), retinol (ROL), retinylpalmitate (ROLpal) and the protonated Schiff-base of retinal (RAL.,). Their photochemistry was followed by both EPR spin-trapping techniques and the direct detection of singlet oxygen via its luminescence at 1270 nm. Irradiation (>300 nm) of RAL, ROL in methanol (MeOH) or RALpal in dimeth-ylformamide, produces free radicals from both solvents. Illumination of RAL., in MeOH containing NADH with light above 400 nm (and even above 455 nm) generates the superoxide radical. We also determined that the quantum yields for singlet oxygen sensitization by RAL, ROL or RALpal in MeOH are 0.05, 0.03 and 4.01, respectively. These values are at least 75% less than those previously found using chemical methods. These observations indicate that a major photochemical process for these retinoids may be an electron (or hydrogen) process that will lead to radical products, and that the singlet oxygen mechanism is of relatively minor importance in protic solvents. These results may explain the action spectra obtained from light-induced damage to the retina.  相似文献   

16.
TIME RESOLVED SPECTROSCOPIC STUDIES ON THE INTACT HUMAN LENS   总被引:1,自引:0,他引:1  
Abstract— The human lens is continually under photooxidative stress from ambient radiation. In the young lens the major absorbing (between300–400 nm) species is the glucoside of 3-hydroxy kynurenine. Using time resolved fluorescence spectroscopy on both the isolated compound and the intact human lens, the first excited singlet state of this compound is shown to have fast (ps) decay processes. This would tend to minimize damage to lens constituents because there would be little time for energy transfer into more harmful channels. Thus, this compound appears to act as a protection for the retina. With aging, human lens proteins become yellow with absorptions out to 450 nm. Time resolved diffuse reflectance spectroscopic studies on intact older human lenses showed that excitation (355 nm) resulted in the formation of long lived (microseconds) transient species with an absorption maximum at ca 490 nm. Similar spectra were obtained from two model systems used to explain age related changes in human lens proteins.  相似文献   

17.
Singlet oxygen was generated by energy transfer from the photoexcited sensitizer, Photofrin or 9-acetoxy-2,7,12,17-tetrakis-(beta-methoxyethyl)-porphycene (ATMPn), to molecular oxygen. Singlet oxygen was detected time-resolved by its luminescence at 1270 nm in an environment of increasing complexity, water (H2O), pure phosphatidylcholine, phosphatidylcholine in water (lipid suspensions), and aqueous suspensions of living cells. In the case of the lipid suspensions, the sensitizers accumulated in the lipids, whereas the localizations in the cells are the membranes containing phosphatidylcholine. By use of Photofrin, the measured luminescence decay times of singlet oxygen were 3.5 +/- 0.5 micros in water, 14 +/- 2 micros in lipid, 9 +/- 2 micros in aqueous suspensions of lipid droplets, and 10 +/- 3 micros in aqueous suspensions of human colonic cancer cells (HT29). The decay time in cell suspensions was much longer than in water and was comparable to the value in suspensions of phosphatidylcholine. That luminescence signal might be attributed to singlet oxygen decaying in the lipid areas of cellular membranes. The measured luminescence decay times of singlet oxygen excited by ATMPn in pure lipid and lipid suspensions were the same within the experimental error as for Photofrin. In contrast to experiments with Photofrin, the decay time in aqueous suspension of HT29 cells was 6 +/- 2 micros when using ATMPn.  相似文献   

18.
Direct optical detection of singlet oxygen from a single cell   总被引:1,自引:0,他引:1  
Singlet oxygen has been detected in single nerve cells by its weak 1270 nm phosphorescence (a1deltag --> X3sigmag-) upon irradiation of a photosensitizer incorporated in the cell. Thus, one can now consider the application of direct optical imaging techniques to mechanistic studies of singlet oxygen at the single-cell level.  相似文献   

19.
Photodynamic therapy (PDT) relies on three main ingredients, oxygen, light and photoactivating compounds, although the PDT response is definitively contingent on the site and level of reactive oxygen species (ROS) generation. This study describes the development of a novel, fluorescent-based actinometer microsphere system as a means of discerning spatially resolved dosimetry of total fluence and ROS production. Providing a high resolution, localized, in situ measurement of fluence and ROS generation is critical for developing in vivo PDT protocols. Alginate-poly-L-lysine-alginate microspheres were produced using ionotropic gelation of sodium alginate droplets, ranging from 80 to 200 microm in diameter, incorporating two dyes, ADS680WS (ADS) and Rhodophyta-phycoerythrin (RPE), attached to the spheres' inside and outside layers, respectively. To test the responsivity and dynamic range of RPE for ROS detection, the production of ROS was initiated either chemically using increasing concentrations of potassium perchromate or photochemically using aluminum tetrasulphonated phthalocyanine. The generation of singlet oxygen was confirmed by phosphorescence at 1270 nm. The resulting photodegradation and decrease in fluorescence of RPE was found to correlate with increased perchromate or PDT treatment fluence, respectively. This effect was independent of pH (6.5-8) and could be inhibited using sodium azide. RPE was not susceptible to photobleaching with light alone (670 nm; 150 Jcm(-2)). ADS, which absorbs light between 600 and 750 nm, showed a direct correlation between radiant exposure (670 nm; 0-100 Jcm(-2)) and diminished fluorescence. Photobleaching was independent of irradiance (10-40 mW cm(-2)). We propose that actinometer microspheres may provide a means for obtaining high spatial resolution information regarding delivered PDT dose within model systems during investigational PDT development and dosimetric information for clinical extracorporeal PDT as in the case of ex vivo bone marrow purging.  相似文献   

20.
Wang J  Kubicki J  Platz MS 《Organic letters》2007,9(20):3973-3976
Ultrafast photolysis (lambda(ex) = 308 nm) of phenyl azide in 100% formic acid produces a broadly absorbing transient within the instrument time resolution (300 fs), which is assigned to an excited state of the azide. The azide excited state fragments within 300 fs to form singlet phenylnitrene. The decay of the nitrene (tau = 12.0 ps) produces a new species with absorption centered at 500 nm, which is assigned to phenylnitrenium ion. The lifetime of phenylnitrenium ion is 110 ps in 100% formic acid. This is the first spectroscopic observation of phenylnitrenium ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号