共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To calculate the electrostatic interaction between a charged sphere and a charged surface under the condition of constant charge density on the two surfaces is difficult. The theory presented in this paper provides an approximate solution to this problem when the charge of the two bodies is of opposite sign. The proposed calculation model is based on a solution of the Poisson–Boltzmann (P–B) equation for two oppositely charged planar surfaces to which the approximate integration procedure developed by Deryaguin is applied. The obtained expression is rather simple and is in good agreement with retention data for a protein in ion exchange chromatography. The developed model is physically more sound than the previously developed ‘slab’ model for protein retention. Under the experimental conditions of ion exchange chromatography of proteins, the two models give comparable numerical values for the ionic strength dependence of retention. 相似文献
3.
Fogolari F Esposito G Viglino P Molinari H 《Journal of computational chemistry》2001,22(15):1830-1842
An easy implementation of molecular mechanics and molecular dynamics simulation using a continuum solvent model is presented that is particularly suitable for biomolecular simulations. The computation of solvation forces is made using the linear Poisson-Boltzmann equation (polar contribution) and the solvent-accessible surface area approach (nonpolar contribution). The feasibility of the methodology is demonstrated on a small protein and a small DNA hairpin. Although the parameters employed in this model must be refined to gain reliability, the performance of the method, with a standard choice of parameters, is comparable with results obtained by explicit water simulations. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1830-1842, 2001 相似文献
4.
5.
Two fundamental challenges of simulating biologically relevant systems are the rapid calculation of the energy of solvation and the trajectory length of a given simulation. The Generalized Born model with a Simple sWitching function (GBSW) addresses these issues by using an efficient approximation of Poisson–Boltzmann (PB) theory to calculate each solute atom's free energy of solvation, the gradient of this potential, and the subsequent forces of solvation without the need for explicit solvent molecules. This study presents a parallel refactoring of the original GBSW algorithm and its implementation on newly available, low cost graphics chips with thousands of processing cores. Depending on the system size and nonbonded force cutoffs, the new GBSW algorithm offers speed increases of between one and two orders of magnitude over previous implementations while maintaining similar levels of accuracy. We find that much of the algorithm scales linearly with an increase of system size, which makes this water model cost effective for solvating large systems. Additionally, we utilize our GPU‐accelerated GBSW model to fold the model system chignolin, and in doing so we demonstrate that these speed enhancements now make accessible folding studies of peptides and potentially small proteins. © 2016 Wiley Periodicals, Inc. 相似文献
6.
A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation
The nonlinear Poisson-Boltzmann equation (PBE) has been successfully used for the prediction of numerous electrostatic properties of highly charged biopolyelectrolytes immersed in aqueous salt solutions. While numerous numerical solvers for the 3D PBE have been developed, the formulation of the outer boundary treatments used in these methods has only been loosely addressed, especially in the nonlinear case. The de facto standard in current nonlinear PBE implementations is to either set the potential at the outer boundaries to zero or estimate it using the (linear) Debye-Hückel (DH) approximation. However, an assessment of how these outer boundary treatments affect the overall solution accuracy does not appear to have been previously made. As will be demonstrated here, both approximations can, under certain conditions, produce completely erroneous estimates of the potential and energy salt dependencies. A related concern for calculations carried out on grids of finite extent (e.g., all current finite difference and finite element implementations) is the contribution to the energy and salt dependence from the exterior region outside the computational grid. This too is shown to be significant, especially at low salt concentration where essentially all of the contributions to the excess osmotic pressure and ion stress energies originate from this exterior region. In this paper the authors introduce a new outer boundary treatment that is valid for both the linear and nonlinear PBE. The authors also formulate energy corrections to account for contributions from outside the computational domain. Finally, the authors also consider the effects of general ion exclusion layers upon biomolecular electrostatics. It is shown that while these layers tend to increase the surface electrostatic potential, under physiological salt conditions and high net charges their effect on the excess osmotic pressure term, which is a measure of the salt dependence of the total electrostatic free energy, is weak. To facilitate presentation and allow very fine resolutions and/or large computational domains to be considered, attention is restricted to the 1D spherically symmetric nonlinear PBE. Though geometrically limited, the modeling principles nevertheless extend to general PBE solvers as discussed in the Appendix. The 1D model can also be used to benchmark and validate the salt effect prediction capabilities of existing PBE solvers. 相似文献
7.
Vizcarra CL Zhang N Marshall SA Wingreen NS Zeng C Mayo SL 《Journal of computational chemistry》2008,29(7):1153-1162
Our goal is to develop accurate electrostatic models that can be implemented in current computational protein design protocols. To this end, we improve upon a previously reported pairwise decomposable, finite difference Poisson-Boltzmann (FDPB) model for protein design (Marshall et al., Protein Sci 2005, 14, 1293). The improvement involves placing generic sidechains at positions with unknown amino acid identity and explicitly capturing two-body perturbations to the dielectric environment. We compare the original and improved FDPB methods to standard FDPB calculations in which the dielectric environment is completely determined by protein atoms. The generic sidechain approach yields a two to threefold increase in accuracy per residue or residue pair over the original pairwise FDPB implementation, with no additional computational cost. Distance dependent dielectric and solvent-exclusion models were also compared with standard FDPB energies. The accuracy of the new pairwise FDPB method is shown to be superior to these models, even after reparameterization of the solvent-exclusion model. 相似文献
8.
To investigate whether implicit solvent models are appropriate for mechanistic studies of conformational transition in proteins, a recently developed generalized Born model (GBSW) was applied to a small signaling protein, chemotaxis protein Y (CheY), with different combinations of the phosphorylation state and conformation of the system; the results were compared to explicit solvent simulations using a stochastic boundary condition. The subtle but distinct conformational transitions involved in CheY activation makes the system ideally suited for comparing implicit and explicit solvent models because these conformational transitions are potentially accessible in both types of simulations. The structural and dynamical properties analyzed include not only those localized to the active site region but also throughout the protein, such as sidechain methyl group order parameters, backbone hydrogen bonding lifetime and occupancy as well as principal components of the trajectories. Overall, many properties were well reproduced by the GBSW simulations when compared with the explicit solvent calculations, although a number of observations consistently point to the suggestion that the current parameterization of the GBSW model tends to overestimate hydrogen-bonding interactions involving both charged groups and (charge-neutral) backbone atoms. This deficiency led to overstabilization of certain secondary structural motifs and more importantly, qualitatively different behaviors for the active site groups (Thr 87, Ala 88, the beta4-alpha4 loop) in response to phosphorylation, when compared with explicit solvent simulations. The current study highlights the value of carrying out both explicit and implicit solvent simulations for complementary mechanistic insights in the analysis of conformational transition in biomolecules. 相似文献
9.
Accuracy assessment of the linear Poisson–Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid–protein complexes 下载免费PDF全文
Federico Fogolari Alessandra Corazza Gennaro Esposito 《Journal of computational chemistry》2015,36(9):585-596
The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson–Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev–Bashford–Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson–Boltzmann model. © 2015 Wiley Periodicals, Inc. 相似文献
10.
We report here an efficient implementation of the finite difference Poisson-Boltzmann solvent model based on the Modified Incomplete Cholsky Conjugate Gradient algorithm, which gives rather impressive performance for both static and dynamic systems. This is achieved by implementing the algorithm with Eisenstat's two optimizations, utilizing the electrostatic update in simulations, and applying prudent approximations, including: relaxing the convergence criterion, not updating Poisson-Boltzmann-related forces every step, and using electrostatic focusing. It is also possible to markedly accelerate the supporting routines that are used to set up the calculations and to obtain energies and forces. The resulting finite difference Poisson-Boltzmann method delivers efficiency comparable to the distance-dependent dielectric model for a system tested, HIV Protease, making it a strong candidate for solution-phase molecular dynamics simulations. Further, the finite difference method includes all intrasolute electrostatic interactions, whereas the distance dependent dielectric calculations use a 15-A cutoff. The speed of our numerical finite difference method is comparable to that of the pair-wise Generalized Born approximation to the Poisson-Boltzmann method. 相似文献
11.
The Poisson-Boltzmann equation is widely used to describe the electrostatic potential of molecules in an ionic solution that is treated as a continuous dielectric medium. The linearized form of this equation, applicable to many biologic macromolecules, may be solved using the boundary element method. A single-layer formulation of the boundary element method, which yields simpler integral equations than the direct formulations previously discussed in the literature, is given. It is shown that the electrostatic force and torque on a molecule may be calculated using its boundary element representation and also the polarization charge for two rigid molecules may be rapidly calculated using a noniterative scheme. An algorithm based on a fast adaptive multipole method is introduced to further increase the speed of the calculation. This method is particularly suited for Brownian dynamics or molecular dynamics simulations of large molecules, in which the electrostatic forces must be calculated for many different relative positions and orientations of the molecules. It has been implemented as a set of programs in C++, which are used to study the accuracy and speed of this method for two actin monomers. 相似文献
12.
The “coarse‐grained” bead modeling methodology, BMM, is generalized to treat electrostatics at the level of the nonlinear Poisson–Boltzmann equation. This improvement makes it more applicable to the important class of highly charged macroions and highly charged peptides in particular. In the present study, the new nonlinear Poisson–Boltzmann, NLPB‐BMM procedure is applied to the free solution electrophoretic mobility of low molecular mass oligolysines (degree of polymerization 1–8) in lithium phosphate buffer at pH 2.5. The ionic strength is varied from 0.01 to 0.10 M) and the temperature is varied from 25 to 50°C. In order to obtain quantitative agreement between modeling and experiment, a small amount of specific phosphate binding must be included in modeling. This binding is predicted to increase with increasing temperature and ionic strength. 相似文献
13.
An explicit ion, implicit water solvent model for molecular dynamics was developed and tested with DNA and RNA simulations. The implicit water model uses the finite difference Poisson (FDP) model with the smooth permittivity method implemented in the OpenEye ZAP libraries. Explicit counter-ions, co-ions, and nucleic acid were treated with a Langevin dynamics molecular dynamics algorithm. Ion electrostatics is treated within the FDP model when close to the solute, and by the Coulombic model when far from the solute. The two zone model reduces computation time, but retains an accurate treatment of the ion atmosphere electrostatics near the solute. Ion compositions can be set to reproduce specific ionic strengths. The entire ion/water treatment is interfaced with the molecular dynamics package CHARMM. Using the CHARMM-ZAPI software combination, the implicit solvent model was tested on A and B form duplex DNA, and tetraloop RNA, producing stable simulations with structures remaining close to experiment. The model also reproduced the A to B duplex DNA transition. The effect of ionic strength, and the structure of the counterion atmosphere around B form duplex DNA were also examined. 相似文献
14.
In this article, the thin-shell formulation is applied to efficiently modeling the Stern layer within computational algorithms oriented toward the boundary element solution of the linearized Poisson-Boltzmann equation. The attention is focused on the calculation of the electrostatic potential in proximity to a biomolecule immersed in an electrolyte medium. Following the proposed approach, the Stern layer is made to collapse to a zero-thickness region (two-dimensional surface) with interface conditions linking the electrostatic potential over the molecular and the bulk ion accessible surfaces. Advantages lie in the limitation of divergent integral problems and in the halving of the unknown number, with a significant impact on computational time and memory requirements when modeling large biomolecules. 相似文献
15.
Mongan J Simmerling C McCammon JA Case DA Onufriev A 《Journal of chemical theory and computation》2007,3(1):156-169
Generalized Born (GB) models provide a computationally efficient means of representing the electrostatic effects of solvent and are widely used, especially in molecular dynamics (MD). A class of particularly fast GB models is based on integration over an interior volume approximated as a pairwise union of atom spheres-effectively, the interior is defined by a van der Waals rather than Lee-Richards molecular surface. The approximation is computationally efficient, but if uncorrected, allows for high dielectric (water) regions smaller than a water molecule between atoms, leading to decreased accuracy. Here, an earlier pairwise GB model is extended by a simple analytic correction term that largely alleviates the problem by correctly describing the solvent-excluded volume of each pair of atoms. The correction term introduces a free energy barrier to the separation of non-bonded atoms. This free energy barrier is seen in explicit solvent and Lee-Richards molecular surface implicit solvent calculations, but has been absent from earlier pairwise GB models. When used in MD, the correction term yields protein hydrogen bond length distributions and polypeptide conformational ensembles that are in better agreement with explicit solvent results than earlier pairwise models. The robustness and simplicity of the correction preserves the efficiency of the pairwise GB models while making them a better approximation to reality. 相似文献
16.
In a recent article (Lee, M. S.; Salsbury, F. R. Jr.; Brooks, C. L., III. J Chem Phys 2002, 116, 10606), we demonstrated that generalized Born (GB) theory provides a good approximation to Poisson electrostatic solvation energy calculations if one uses the same definitions of molecular volume for each. In this work, we present a new and improved analytic method for reproducing the Lee-Richards molecular volume, which is the most common volume definition for Poisson calculations. Overall, 1% errors are achieved for absolute solvation energies of a large set of proteins and relative solvation energies of protein conformations. We also introduce an accurate SASA approximation that uses the same machinery employed by our GB method and requires a small addition of computational cost. The combined methodology is shown to yield an efficient and accurate implicit solvent representation for simulations of biopolymers. 相似文献
17.
In molecular mechanics calculations, electrostatic interactions between chemical groups are usually represented by a Coulomb potential between the partial atomic charges of the groups. In aqueous solution these interactions are modified by the polarizable solvent. Although the electrostatic effects of the polarized solvent on the protein are well described by the Poisson--Boltzmann equation, its numerical solution is computationally expensive for large molecules such as proteins. The procedure of nonuniform charge scaling (NUCS) is a pragmatic approach to implicit solvation that approximates the solvent screening effect by individually scaling the partial charges on the explicit atoms of the macromolecule so as to reproduce electrostatic interaction energies obtained from an initial Poisson--Boltzmann analysis. Once the screening factors have been determined for a protein the scaled charges can be easily used in any molecular mechanics program that implements a Coulomb term. The approach is particularly suitable for minimization-based simulations, such as normal mode analysis, certain conformational reaction path or ligand binding techniques for which bulk solvent cannot be included explicitly, and for combined quantum mechanical/molecular mechanical calculations when the interface to more elaborate continuum solvent models is lacking. The method is illustrated using reaction path calculations of the Tyr 35 ring flip in the bovine pancreatic trypsin inhibitor. 相似文献
18.
Linda Yu Zhang Emilio Gallicchio Richard A. Friesner Ronald M. Levy 《Journal of computational chemistry》2001,22(6):591-607
Solvent effects play a crucial role in mediating the interactions between proteins and their ligands. Implicit solvent models offer some advantages for modeling these interactions, but they have not been parameterized on such complex problems, and therefore, it is not clear how reliable they are. We have studied the binding of an octapeptide ligand to the murine MHC class I protein using both explicit solvent and implicit solvent models. The solvation free energy calculations are more than 103 faster using the Surface Generalized Born implicit solvent model compared to FEP simulations with explicit solvent. For some of the electrostatic calculations needed to estimate the binding free energy, there is near quantitative agreement between the explicit and implicit solvent model results; overall, the qualitative trends in the binding predicted by the explicit solvent FEP simulations are reproduced by the implicit solvent model. With an appropriate choice of reference system based on the binding of the discharged ligand, electrostatic interactions are found to enhance the binding affinity because the favorable Coulomb interaction energy between the ligand and protein more than compensates for the unfavorable free energy cost of partially desolvating the ligand upon binding. Some of the effects of protein flexibility and thermal motions on charging the peptide in the solvated complex are also considered. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 591–607, 2001 相似文献
19.
Examining the potential for electrostatic complementarity between a ligand and a receptor is a useful technique for rational drug design, and can demonstrate how a system prioritizes interactions when allowed to optimize its charge distribution. In this computational study, we implemented the previously developed, continuum solvent-based charge optimization theory with a simple, quadratic programming algorithm and the UHBD Poisson-Boltzmann solver. This method allows one to compute the best set of point charges for a ligand or ligand region based on the ligand and receptor shape, and the receptor partial charges, by optimizing the binding free energy obtained from a continuum-solvent model. We applied charge optimization to a fragment of the heat-stable protein kinase inhibitor (PKI) of protein kinase A (PKA), to three flavopiridol inhibitors of CDK2, and to cyclin A which interacts with CDK2 to regulate the cell cycle. We found that a combination of global (involving every charge) and local (involving only charges in a local region) optimization can give useful hints for designing better inhibitors. Although some parts of an inhibitor may already contribute significantly to binding, we found that they could still be the most important targets for modifications to obtain stronger binders. In studying the binding of flavopiridol inhibitors to CDK2, comparable binding affinity could be obtained regardless of whether the net charges of the inhibitors were constrained to -2, -1, 0, 1, or 2 during the optimization. This provides flexibility in inhibitor design when a certain net charge of the inhibitor is desired in addition to strong binding affinity. For the study of the PKA-PKI and CDK2-cyclin A interfaces, we identified residues whose charge distributions are already close to optimal and those whose charge distributions could be refined to further improve binding. 相似文献
20.
The classical simplex method is extended into the Semiglobal Simplex (SGS) algorithm. Although SGS does not guarantee finding the global minimum, it affords a much more thorough exploration of the local minima than any traditional minimization method. The basic idea of SGS is to perform a local minimization in each step of the simplex algorithm, and thus, similarly to the Convex Global Underestimator (CGU) method, the search is carried out on a surface spanned by local minima. The SGS and CGU methods are compared by minimizing a set of test functions of increasing complexity, each with a known global minimum and many local minima. Although CGU delivers substantially better success rates in simple problems, the two methods become comparable as the complexity of the problems increases. Because SGS is generally faster than CGU, it is the method of choice for solving optimization problems in which function evaluation is computationally inexpensive and the search region is large. The extreme simplicity of the method is also a factor. The SGS method is applied here to the problem of finding the most preferred (i.e., minimum free energy) solvation sites on a streptavidin monomer. It is shown that the SGS method locates the same lowest free energy positions as an exhaustive multistart Simplex search of the protein surface, with less than one-tenth the number of minizations. The combination of the two methods, i.e.. multistart simplex and SGS, provides a reliable procedure for predicting all potential solvation sites of a protein. 相似文献