首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
Fe–N–C catalysts were prepared through metal-assisted polymerization method. Effects of carbon treatment, Fe loading, nitrogen source, and calcination temperature on the catalytic performance of the Fe–N–C for H2O2 electroreduction were measured by voltammetry and chronoamperometry. The Fe–N–C catalyst shows optimal performance when prepared with pretreated active carbon, 0.2 wt.% Fe, paranitroaniline (4-NA) and one-time calcination. The Fe–N–C catalyst displayed good performance and stability for electroreduction of H2O2 in alkaline solution. An Al–H2O2 semi-fuel cell was set up with Fe–N–C catalyst as cathode and Al as anode. The cell exhibits an open-circuit voltage of 1.3 V and its power density reached 51.4 mW cm−2 at 65 mA cm−2.  相似文献   

2.
Three CdX2-containing (X = Cl, Br) compounds [CdBr2(Him)2] n (Him = imidazole) (1), [CdCl2(2,2′-bipy)] n (2,2′-bipy = 2,2′-bipyridine) (2), and [CdCl2(phen)] (phen = phenanthroline) (3) have been synthesized through hydrothermal technique. Compound 1 adopts 1-D coordination chain, which is connected to form a 3-D supramolecular network by inter-chain N–H ··· Br and C–H ··· Br hydrogen bonds. Compound 2 also adopts 1-D coordination chain, which is connected to form 3-D supramolecular network by intra- and inter-chain C–H ··· Cl hydrogen bonds; 3 is discrete, linked to form 2-D supramolecular sheets by intra- and inter-molecular C–H ··· Cl hydrogen bonds. The different volume and coordination ability of organic ligands result in the different coordination structure and supramolecular synthons. All these compounds exhibit strong fluorescence emissions at room temperature.  相似文献   

3.
The crystallization kinetics of Cs2O–Fe2O3–P2O5 glasses containing 12.5–27 mol% Cs2O were studied by using differential scanning calorimetry under nonisothermal conditions. Strong dependence of activation energy with temperature was observed, indicating the complex nature of the crystallization process. The various crystallization products were identified by X-ray diffraction technique. CsFeP2O7 was found to be the major crystalline phase in all cases. The overall activation energy obtained by classical model-free kinetic method was compared with that of isoconversional method; and from the results, the dependence of activation energy on extent of reaction and average temperature was delineated.  相似文献   

4.
ZrO2SiO2 aerogel modified by Fe(III) ion was prepared and the stability of the samples under high temperature was investigated. The structure and properties of modified aerogels were characterized by N2 adsorption–desorption, FT-IR, XRD and TEM. The samples still contain a specific surface area about 228 m2/g after 1,000 °C 0.5 h calcinations. The inhibition of ZrO2 particle growth is attributed to the Fe(III) ion modified aerogel surface, which strongly retards the ZrO2 tetragonal phase transformation as well.  相似文献   

5.
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the ν4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the ν2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.  相似文献   

6.
The reaction of Fe(III) with the substituted salicylaldehydes [X-saloH, where X = 3-OCH3 (L 1 ), 5-CH3 (L 2 ), 5-Cl (L 3 ), 5-NO2 (L 4 )] led to the formation of four new iron(III) hetero-heptanuclear complexes (Fe–Na) under the general formula [Fe2(X-salo)8Νa5] · 3OH · zH2Ο. The two different coordination modes of the ligand, as well as the geometry around the metal ions were deduced by X-ray structure analysis of compound 1, [Fe2(3-OCH3-salo)8Νa5] · 3OH · 8H2Ο. The complexes have also been characterized by physicochemical and spectroscopic (IR, UV–Vis, Mössbauer) methods.  相似文献   

7.
Summary Crystals of Co2(X 2O7)·2H2O,X=P/As were synthesized under hydrothermal conditions. Their crystal structures were determined by single crystal X-ray diffraction:a=6.334(1)/6.531(2),b=13.997(2)/14.206(4),c=7.637(1)/7.615(2)Å, =94.77(2)/94.74(2)°, space group P21/n,R=0.032/0.046,R w=0.028/0.034 for 2423/2042 reflections and 131/119 variables. Within the twoXO4 tetrahedra connected via a common corner to anX 2O7 group the average P-O bond lengths are approximately equal (1.540 and 1.543 Å), but As-O differs significantly (1.685 and 1.696 Å). A comparison with the isotypic Mn and Mg pyrophosphates shows a correlation between the ratio Me-O/X-O and the angle O-X-O.
Vergleich der Kristallstrukturen von Co2(X 2O7)·2H2O,X=P und As
Zusammenfassung Kristalle von Co2(X 2O7)·2H2O,X=P/As wurden unter Hydrothermalbedingungen synthetisiert. Ihre Kristallstrukturen wurden mittels Röntgenbeugung an Einkristallen bestimmt:a=6.334(1)/6.531(2),b=13.997(2)/14.206(4),c=7.637(1)/7.615(2) Å, =94.77(2)/97.74(2)°, Raumgruppe P21/n,R=0.032/0.046,R w=0.028/0.034 für 2423/2042 Reflexe und 131/119 Variable. In den beiden über eine gemeinsame Ecke zuX 2O7-Gruppen verknüpftenXO4-Tetraedern sind die mittleren P-O-Abstände ungefähr gleich (1.540 und 1.543 Å), hingegen differiert As-O signifikant (1.685 und 1.696 Å). Ein Vergleich mit den isotypen Mn- und Mg-Pyrophosphaten zeigt eine Korrelation zwischen dem Quotienten Me-O/X-O und dem WinkelX-O-X.
  相似文献   

8.
A study of xNa2O·5Fe2O3·(95-x)B2O3 glasses(x = 10–35) by Mössbauer spectroscopy was carried out in order to elucidate the effect of non-bridging oxygen (NBO) on Mössbauer parameters for Fe3+ ions. From the change of the isomer shift and quadrupole splitting, it was found that the Fe3+ ions in these borate glasses constitute FeO4 tetrahedra and play a role of network former. These Mössbauer parameters reflect well the formation of NBO when N2O contents is larger than 20 mol%. From the measurements of absorption area at low temperature, the D values for Fe3+ ions in 10Na2O·5Fe2O3·85B2O3 and 35Na2O·5Fe2O3·60B2O3 glasses were determined to be 320 and 289 K, respectively. The decrease of D value from 320 to 289 K is ascribed to the NBO which was formed by the breaking of -B-O-B- bonds.  相似文献   

9.
In iron–antimony catalysts containing excess antimony oxide and consisting of a mixture of FeSbO4 and -Sb2O4 phases, the structure of iron antimonate changes compared to the catalyst with an equimolar composition, which is the pure FeSbO4 phase. In the presence of excess antimony oxide in the near-surface layer of iron antimonate, extended defects with a structure of crystallographic shift are formed. These accumulate overstoichiometric antimony. Such a structural change is associated with changes in the acid–base properties and the surface oxygen binding strength.  相似文献   

10.
Summary The crystal structure of the hydrothermally synthesized compound Fe(SeO2OH) (SeO4) · H2O was determined by single crystal diffraction methods:a=8.355(2) Å,b=8.696(2) Å,c=9.255(2) Å, =93.72(1)°,V=670.95 Å3;Z=4, space group P21/c,R=0.029,R w=0.027 for 2430 independent reflections (sin /0.76 Å–1). Isolated FeO5(H2O)-octahedra share five corners with [SeO2OH] and [SeO4] groups to form sheets parallel to (100). These sheets are interconnected via hydrogen bonds only.
Die Kristallstruktur von Fe(SeO2OH)(SeO4)·H2O
Zusammenfassung Die Kristallstruktur der hydrothermal dargestellten Verbindung Fe(SeO2OH) (SeO4)·H2O wurde mittels Einkristallbeugungsmethoden bestimmt:a=8.355(2) Å,b=8.696(2) Å,c=9.255(2) Å, =93.72(1)°,V=670.95 Å3;Z=4, Raumgruppe P21/c,R=0.029,R w=0.027 für 2 430 unabhängige Reflexe (sin / 0.76 Å–1). Isolierte FeO5(H2O)-Oktaeder teilen fünf Ecken mit [SeO2OH]- und [SeO4]-Gruppen, wobei sie Schichten parallel (100) bilden. Diese Schichten sind nur über Wasserstoffbrücken miteinander verbunden.
  相似文献   

11.
Using thermogravimetric analyses as well as isothermal gravimetric measurements, the thermal stability of the iron(III) nitrate nanohydrate has been determined. Several decomposition stages are the result of melting, evaporation and hydrolysis processes occurring in the salt—water system in the temperature range of 20–400°C. Some of the intermediates and the final product (-Fe2O3) are characterized by means of chemical analyses, X-ray diffraction patterns and IR spectra.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

12.
Using ESR and IR spectroscopy, the structures of >Si(O–C·=O)(CH2–CH3) (1) and >Si(CH2–CH·–CH3)(CH2–CH3) (2) radicals were deciphered. The directions and kinetic parameters of reactions of intramolecular rearrangements in these radicals were determined. The reactions of hydrogen atom abstraction in radical (1) from the CH2 and CH3 groups were studied. It was found that the endothermic reaction of hydrogen atom abstraction from the methyl group occurs at a higher rate than the exothermic reaction with the methylene group. The differences are determined by changes in the size of a cyclic transition state. Based on the experimental data, the strengths of separate C–H bonds in surface fragments are compared. The rearrangement >Si(CH2–CH·–CH3)(CH2–CH3) >Si(C·(CH3)2)(CH2–CH3) was discovered and its mechanism was determined. One of its steps is the skeletal isomerization Si- (2)- . (1)Si- (1)- . (2). Experimental data are analyzed using the results of quantum-chemical calculations of model systems.  相似文献   

13.
The three-component systems RbClMnCl2H2O, 2RbCl · CoCl2 · 2H2O2RbCl · CuCl2 · 2H2OH2O, 2RbCl · CoCl2 · 2H2O2RbCl · MnCl2 · 2H2OH2O have been studied at 25°C. In the 2RbCl · CoCl2 · 2H2O2RbCl · CuCl2 · 2H2OH2O system, a discontinuous series of mixed crystals is formed and in the 2RbCl · CoCl2 · 2H2O2RbCl · MnCl2 · 2H2OH2O system, a continuous series is present.The unit cell parameters of the 2RbCl · CoCl2 · 2H2O double salt were determined: a = 5.586(2) Å, b = 6.469(3) Å, c = 6.988(2) Å, α = 65.31(3)°, β = 87.69(3)°, γ = 84.65(4)°, volume 228.4 Å3, Z = 1.The results obtained and discussed in conjunction with the crystal structure data suggest that for 2MICl · MIICl2 · 2H2O type salts the triclinic structure is stable only when the large rubidium and cesium ions participate in combinations with non-Jahn-Teller metal(II) ions. In the cases of Jahn-Teller metal(II) ions or with potassium or ammonium ions a tetragonal structure is always stable.  相似文献   

14.
This paper reports on the preparation of SO4 2?/Fe2O3–TiO2–Nd2O3 (SFTN) by combustion method. The effect of Nd content on catalytic activity was investigated. The prepared materials doped and undoped by Nd were compared by means of TG-DTG, XRD, FT-IR, NH3-TPD and TEM techniques. Results indicated that the introduction of Nd improved the catalytic activities of the catalysts. Catalytic activity of SFTN was the highest with 98.3 % menthol conversion when Nd content was at 2 wt%. The introduction of Nd stabilized the coordination bond between the sulfate irons and the metallic oxides, helping in the formation of solid acid sites, enhancing the dispersion of catalyst particles, and inhibiting the growth of catalyst particles under heating.  相似文献   

15.
Fe(III) chloride hydrate (FeCl3·xH2O) undergoes simultaneous dehydration and dehydrochlorination from its molten phase in the temperature range 100–200C. The kinetics of these two parallel thermal processes has been studied by both isothermal and non-isothermal methods. Whereas for the dehydration reaction at temperature below 125C a second order rate model (F2) fits well, a three-dimensional diffusion (D3) model is found to fit better at temperature above 135C. For the dehydrochlorination reaction an interface growth controlled model of 1/3 order (F 1/3) appears to be the most suitable over a wide range of reaction. Dynamic thermogravimetry reveals two major steps in the temperature range 50–250C. The first step which corresponds to the loss of about 4 mols of H2O, invariably follows second order kinetics (F2). The second step which is predominantly a process of dehydrochlorination, generally fits mixed diffusion controlled models due to the overlapping with the dehydration process. There is an excellent agreement in results among the isothermal and non-isothermal methods of determining kinetic parameters.The authors are thankful to the Director, R. R. L. Bhubaneswar for his kind permission to publish this paper. One of the authors (SKM) is grateful to the Council of Scientific and Industrial Research, New Delhi, for the award of a Research Fellowship.  相似文献   

16.
Electrodeposition of Zn–Fe alloys on a copper substrate from a sulfate bath with different Fe2+ concentration (0.05, 0.10 and 0.20 mol L?1) at room temperature was investigated using cyclic voltammetry. The influence of the Fe2+ content in the plating bath on the surface morphology, structural and magnetic properties of the coatings were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Vibrating Sample Magnetometer (VSM). The results show that the morphology of Zn–Fe films changes with different Fe2+ concentration. The EDS analysis demonstrated that the Fe content of the coatings increased with increasing the Fe concentration in the bath. XRD measurements shows the presence of ?Zn (hcp), δ1ZnFe (hcp) and the ΓZnFe (bcc) phases with a (101) preferential orientation in all the electrodeposited films. The magnetic analysis of Zn–Fe films indicated that the saturation magnetization was largely enhanced in comparison to pure Zn, especially with 0.2 at. % Fe, while the coercivity decreased.  相似文献   

17.
Fe(OTf)2 has been found to be an efficient catalyst for the Oxa-Pictet–Spengler cyclization reaction leading to isochromans. A series of substituted isochromans were obtained with good to excellent isolated yields by coupling β-arylethanols with aldehydes or ketals under the catalysis of 1?mol% of Fe(OTf)2?at 70?°C. Using a cheap, less-toxic catalyst with water as the only byproduct, this iron-catalyzed Oxa-Pictet–Spengler reaction can be considered environmentally-friendly and atom-economic.  相似文献   

18.
The phase equilibria in the solid state in the system FeVO4?CCu3V2O8 and FeVO4?CCuO have been determined. Based on the obtained DTA and XRD analysis results and some additional research, a phase diagram in the whole subsolidus area of the system CuO?CV2O5?CFe2O3 has been worked out. Eighteen subsidiary subsystems can be distinguished in this ternary system. Basic properties of the obtained phases with howardevansite- and lyonsite-type structure have been investigated by DTA, IR, and SEM methods.  相似文献   

19.
The applications of zerovalent iron nanoparticles (nZVI) exploit their high reactivity which decreases due to oxidation in aerobic conditions during manufacture, application, and storage. In this study, we present the new procedure for estimation of the nZVI stability to oxidation in air. The procedure is suitable for characterization of the novel materials based on the supported nZVI. Nanoscale particles were synthesized inside porous silica supports by incipient wetness impregnation with the metal precursor solutions followed by thermal treatment. The TG–DTA studies revealed the decomposition temperature of the supported precursors, as well as the interaction of Fe and precious metal precursors, which resulted in the formation of alloy nanoparticles. Characterization of the samples by XRD confirmed the formation of the nanoparticles of the metallic Pd, Pt, and Fe phases supported on SiO2 carriers, as well as the formation of solid solutions based on the structure of precious metals. The new procedure for estimation of the nZVI stability included (1) TPR with hydrogen up to 400–425 °C followed by isothermal reduction at these temperatures; (2) in situ reoxidation with oxygen at room temperature. The samples were reduced “as obtained” and after in situ reoxidation. The results of the TPR studies exhibited that introduction of both Pd and Pt protected the Fe nanoparticles from oxidation with oxygen and air at ambient conditions.  相似文献   

20.
The effect of mechanical activation on the structure and thermal reactions of glasses has been studied on the example of Na–Al–Fe phosphate glasses. These glasses are used in nuclear technology for immobilization of radioactive waste. The glasses were activated by grinding in a planetary mill. Mechanical activation causes a decrease of the T g temperature as well as of the glass crystallization temperature. The type of crystalline phases formed and the quantitative proportions between them are changing. Analysis of inter-atomic interactions in the structure of glass was applied to explain the observed regularities governing the crystallization of the activated glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号