首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The complexes between borazine and TH3F/F2TO/H2TO (T = C, Si, Ge) are investigated with high-level quantum chemical calculations. Borazine has three sites of negative electrostatic potential: the N atom, the ring center, and the H atom of the B H bond, whereas TH3F and F2TO/H2TO provide the σ-hole and π-hole, respectively, for the tetrel bond. The N atom of borazine is the favored site for both the σ and π-hole tetrel bonds. Less-stable dimers include a σ-tetrel bond to the borazine ring center and to the BH proton. The π-hole tetrel-bonded complexes are more strongly bound than are their σ-hole counterparts. Due to the coexistence of both T···N tetrel and B···O triel bonding, the complexes of borazine with F2TO/H2TO (T = Si and Ge) are very stable, with interaction energies up to −108 kcal/mol. The strongly bonded complexes are accompanied by substantial net charge transfer from F2TO/H2TO to borazine.  相似文献   

2.
The region of positive electrostatic potentials (σ-hole) has been found along the extension of the C–I bond in the iodine-ylide CH2IH, which suggests that the iodine-ylide could interact with nucleophiles to form weak, directional noncovalent interactions. MP2 calculations confirmed that the I···N σ-hole interaction exists in the CH2IH···NCX (X = H, F, Cl, Br, I) bimolecular complexes. The NCCl···CH2IH···NCX (X = H, F, Cl, Br, I) termolecular complexes were constructed to investigate the weakly bonded σ-hole interactions to be strengthened by Cl···C halogen bond. And then, the NCY···CH2IH···NCCl (Y = H, F, Cl, Br, I) termolecular complexes were designed to investigate the enhancing effects of the I···N σ-hole interaction on the Y···C halogen/hydrogen-bonded interactions. Accompany with the mutual enhancing processes of the σ-hole interactions and halogen/hydrogen-bonded interactions in the iodine-ylide containing termolecular complexes, both the I···N σ-hole interactions and Y···C halogen/hydrogen-bonded interactions become more polarizable.  相似文献   

3.
Computational methods were used to calculate the crystal lattice energy reflecting global interactions, predominantly long-range electrostatic interactions between ions, as well as the energy of selected specific local C–H···O, C–H···π and π···π interactions found in synthesized 7-(diethylamino)-2-(2-oxo-2H-chromen-3-yl)chromenium perchlorate, the structure of which was determined by X-ray crystallography. Local interactions occurring between specific sites of molecules, amounting to a few tens of kJ mol?1, most likely account for the mutual arrangement of molecular ions, whereas global ones, exceeding half-a-thousand kJ mol?1, are responsible for the thermodynamic stability of the compound investigated in the crystalline solid phase, whose potential applications are briefly outlined.  相似文献   

4.
Quantum calculations at the MP2/cc-pVTZ, MP2/aug-cc-pVTZ, and CCSD(T)/cc-pVTZ levels have been used to examine 1:1 and 1:2 complexes between O(2)NX (X = Cl, Br, and I) with NH(3). The interaction of the lone pair of the ammonia with the σ-hole and π-hole of O(2)NX molecules have been considered. The 1:1 complexes can easily be differentiated using the stretching frequency of the N-X bond. Thus, those complexes with σ-hole interaction show a blue shift of the N-X bond stretching whereas a red shift is observed in the complexes along the π-hole. The SAPT-DFT methodology has been used to gain insight on the source of the interaction energy. In the 1:2 complexes, the cooperative and diminutive energetic effects have been analyzed using the many-body interaction energies. The nature of the interactions has been characterized with the atoms in molecules (AIM) and natural bond orbital (NBO) methodologies. Stabilization energies of 1:1 and 1:2 complexes including the variation of the zero point vibrational energy (ΔZPVE) are in the ranges 7-26 and 14-46 kJ mol(-1), respectively.  相似文献   

5.
Zhang  Yong-Hui  Li  Yu-Liang  Yang  Jianming  Zhou  Pan-Pan  Xie  Kefeng 《Structural chemistry》2020,31(1):97-101

Physisorption of bromopentafluorobenzene (C6F5Br) on graphene can occur due to the unique σ-hole and π-hole characters of C6F5Br and the rich π-electrons region of graphene, leading to the formation of three types of π-hole···π and σ-hole···π interactions. The π-hole···π interactions are even stronger than the σ-hole···π interactions. The property of graphene was significantly affected by such physisorption.

  相似文献   

6.
7.
Several σ-hole and π-hole tetrel-bonded complexes with a base H2CX (X=O, S, Se) have been studied, in which TH3F (T=C−Pb) and F2TO (T=C and Si) act as the σ-hole and π-hole donors, respectively. Generally, these complexes are combined with a primary tetrel bond and a weak H-bond. Only one minimum tetrel-bonded structure is found for TH3F, whereas two minima tetrel-bonded complexes for some F2TO. H2CX is favorable to engage in the π-hole complex with F2TO relative to TH3F in most cases, and this preference further expands for the Si complex. Particularly, the double π-hole complex between F2SiO and H2CX (X=S and Se) has an interaction energy exceeding 500 kJ/mol, corresponding to a covalent-bonded complex with the huge orbital interaction and polarization energy. Both the σ-hole interaction and the π-hole interaction are weaker for the heavier chalcogen atom, while the π-hole interaction involving F2TO (T=Ge, Sn, and Pb) has an opposite change. Both types of interactions are electrostatic in nature although comparable contributions from dispersion and polarization are respectively important for the weaker and stronger interactions.  相似文献   

8.
According to the density functional theory calculations, the X···H···N (X?N, O) intramolecular bifurcated (three‐centered) hydrogen bond with one hydrogen donor and two hydrogen acceptors causes a significant decrease of the 1hJ(N,H) and 2hJ(N,N) coupling constants across the N? H···N hydrogen bond and an increase of the 1J(N,H) coupling constant across the N? H covalent bond in the 2,5‐disubsituted pyrroles. This occurs due to a weakening of the N? H···N hydrogen bridge resulting in a lengthening of the N···H distance and a decrease of the hydrogen bond angle at the bifurcated hydrogen bond formation. The gauge‐independent atomic orbital calculations of the shielding constants suggest that a weakening of the N? H···N hydrogen bridge in case of the three‐centered hydrogen bond yields a shielding of the bridge proton and deshielding of the acceptor nitrogen atom. The atoms‐in‐molecules analysis shows that an attenuation of the 1hJ(N,H) and 2hJ(N,N) couplings in the compounds with bifurcated hydrogen bond is connected with a decrease of the electron density ρH···N at the hydrogen bond critical point and Laplacian of this electron density ?2ρH···N. The natural bond orbital analysis suggests that the additional N? H···X interaction partly inhibits the charge transfer from the nitrogen lone pair to the σ*N? H antibonding orbital across hydrogen bond weakening of the 1hJ(N,H) and 2hJ(N,N) trans‐hydrogen bond couplings through Fermi‐contact mechanism. An increase of the nitrogen s‐character percentage of the N? H bond in consequence of the bifurcated hydrogen bonding leads to an increase of the 1J(N,H) coupling constant across the N? H covalent bond and deshielding of the hydrogen donor nitrogen atom. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A novel mixed alkali metal hydrated borate NaCs[B10O14(OH)4] was synthesized under hydrothermal conditions. Its structure was determined by single-crystal X-ray diffraction and further characterized by FT-IR spectroscopy, TG-DTA, powder X-ray diffraction, and chemical analysis. NaCs[B10O14(OH)4] crystallizes in monoclinic space group P2/c with a = 7.6588(3) Å, b = 9.0074(3) Å, c = 11.8708(6) Å, and β = 115.682(3)°. The crystal structure of NaCs[B10O14(OH)4] consists of Na–O, Cs–O polyhedral, and [B10O14(OH)4]2? polyborate anions. [B10O14(OH)4]2? units are connected together through common oxygen atoms forming a 1D helical chain-like structure, which are further connected by O–H···O hydrogen bonds forming a 3D supramolecular structure. Through a designed thermochemical cycle, the standard molar enthalpy of formation of this borate was determined to be ?7888.6 ± 8.1 kJ mol?1 by using a heat conduction microcalorimeter.  相似文献   

10.
Two sulfato CuII complexes [Cu2(bpy)2(H2O)(OH)2(SO4)]· 4H2O ( 1 ) and [Cu(bpy)(H2O)2]SO4 ( 2 ) were synthesized and structurally characterized by single crystal X—ray diffraction. Complex 1 consists of the asymmetric dinuclear [Cu2(bpy)2(H2O)(OH)2(SO4)] complex molecules and hydrogen bonded H2O molecules. Within the dinuclear molecules, the Cu atoms are in square pyramidal geometries, where the equatorial sites are occupied by two N atoms of one bpy ligand and two O atoms of different μ2—OH groups and the apical position by one aqua ligand or one sulfato group. Through intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular π—π stacking interactions, the dinuclear complex molecules are assembled into layers, between which the hydrogen bonded H2O molecules are located. The Cu atoms in 2 are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two H2O molecules and two sulfato groups with the sulfato O atoms at the trans positions and are bridged by sulfato groups into 1[Cu(bpy)(H2O)2(SO4)2/2] chains. Through the interchain π—π stacking interactions and interchain C—H···O hydrogen bonds, the resulting chains are assembled into bi—chains, which are further interlinked into layers by O—H···O hydrogen bonds between adjacent bichains.  相似文献   

11.
DyI2 and Dy3I were synthesized by literature techniques. Their enthalpies of solution were determined and their enthalpies of formation calculated to be ΔfH°(DyI2, s, 298 K) = ?(394 ± 16) kJ· mol?1 and ΔfH°(DyI3, s, 298 K) = ?(616 ± 10) kJ· mol?1. With appropriate literature and estimated enthalpies of solution and standard entropies, the E°(Dy3+/Dy2+, aq) was calculated to be ?(2.6 ± 0.2) V. A comparison is made of the enthalpies of reduction of DyI3 to DyI2 and of DyCl3 to DyCl2.  相似文献   

12.
Ab initio calculations at the MP2/aug-cc-pVTZ level of theory are performed to examine 1:1 and 1:2 complexes of YOF2X (X = F, Cl, Br, I; Y = P, As) with ammonia. The YOF2X:NH3 complexes are formed through the interaction of the lone pair of the ammonia with the σ-hole region associated with the X or Y atom of YOF2X molecule. The calculated interaction energies of halogen-bonded complexes are between ?1.06 kcal/mol in the POF3···NH3 and ?6.21 kcal/mol in the AsOF2I···NH3 one. For a given Y atom, the largest pnicogen bond interaction energy is found for the YOF3, while the smallest for the YOF2I one. Almost a strong linear relationship is evident between the interaction energies and the magnitudes of the positive electrostatic potentials on the X and Y atoms. The results indicate that the interaction energies of halogen and pnicogen bonds in the ternary H3N:YOF2X:NH3 systems are less negative relative to the respective binary systems. The interaction energy of Y···N bond is decreased by 1–22 %, whereas that of X···N bond by about 5–61 %. That is, both Y···N and X···N interactions exhibit anticooperativity or diminutive effects in the ternary complexes.  相似文献   

13.
Two new complexes based on 4,4′-[1,3-phenylenebis(oxy)]diphthalic acid (H4L) ligands were synthesized, namely, [Cd2(L)(1,10-phen)2(H2O)]n( 1 ) and [Co2(L)(1,10-phen)2(H2O)]n( 2 ), in which 2D structures transform into 3D supramolecular structures by C H···π interaction. The proton conductivity of complexes 1 and 2 at low temperature is close (σ1 = 3.12 × 10−8 S cm−1 and σ2 = 3.81 × 10−8 S cm−1 at 30°C), but these two complexes show different conduction mechanisms. The Vehicular mechanism in 1 is caused by the O···H/H···O contact in 1 , which is stronger than 2 , and the Grotthuss mechanism in 2 is caused by the N···H/H···N contact in 2 , which is stronger than 1 . At the same time, complex 1 showed excellent antibacterial properties in vitro, mainly reflected in that five kinds of bacteria (Escherichia coli, Bacillus amyloliquefaciens, Pantoea agglomerans, Pseudomonas putida, and Pectobacterium carotovora) could play an obvious inhibitory effect in the concentration range of 20 μg·ml−1.  相似文献   

14.
Four new 1,10-phenanthroline-coordinated early lanthanide complexes containing a σ-carbon-metal bond 1–4 were synthesized by the reaction of alkynylsodium or alkyllithium with (η5-C5H5)2LnCl·nPhen in THF at 0 or −78°C. The complexes (η5-C5H5)2LnCl·nPhen were prepared from LnCl3·nPhen and C5H5Na. 1,1′-Trimethylenedicyclopentadienyl(phenylacetylenylneodymium). THF 5 was also prepared. These complexes were identified by elemental analysis, IR, 1H NMR spectroscopy and thermogravimetry. Protolysis reactions of these complexes with H2O. CH3OH and t-C4H9OH show that different protolytic reagents give the products with different cleavage extents of σ- and π-bonds. The ligands in the complexes also affect the cleavage of π-bonds. β-Hydrogen elimination of complex 3 takes place with thermal decomposition.  相似文献   

15.
The new title two-dimensional hetero-tetra nuclear Cu3–Na coordination polymer {[NaCu3Cl(cpiap)2(H2O)3]n·6nH2O} (1) consists of crystallographically two-independent copper(II) centers, each bridged by a sodium cation through carboxylate-oxygen of the deprotonated H3cpiap ligand (H3cpiap = 2-(carboxyphenyl)iminoaceticpropanoic acid) to CuII (2) and CuII (2) cations, and through water molecules to CuII (1) cation. CuII (2) and CuII (1) cations are bridged by carboxylate-oxygen atoms of the ligand in a syn-anti mode which, alternate regularly within the chain being bridged by a tetra coordinated sodium cation. Each CuII (2) and CuII (2) cation in (1) is in an octahedral environment formed by four carboxylate-oxygens from two cpiap3− ligands, one nitrogen atom and a bridging chloride atom. CuII (1) cation is in a square pyramidal environment formed by three water molecules and two carboxylate-oxygens from two cpiap3− ligands. The ligand acts simultaneously as monodentate and tridentate toward CuII (1) and CuII (2) cations respectively. The lattice water molecules involved in OH···O hydrogen bonding are situated in the void spaces between layers. The zigzag chains, which run along the b-axes further construct three-dimensional metal-organic framework via hydrogen bonding and weak face-to-face π-π interactions. Weak CH···O interactions are also present.  相似文献   

16.
纳米Co3O4具有尖晶石结构,Co3 占据八面体位,具有较高的晶体场稳定化能,在空气中低于800℃时十分稳定,是优良的催化材料[1]。Co3O4还可以作为高比能锂离子电池负极材料具有非常好的电化学活性,充放电容量高达960m A h·g-1。纳米Co3O4在紫外、可见及近红外区域都有良好的吸收效果,因此,在隐身技术、保温节能技术等领域具有潜在的应用前景。所以,Co3O4超细粉体的制备和应用研究具有十分重要的意义。我们合成了草酸盐先驱物制备纳米Co3O4用作隐身材料,因此对先驱物的热分解过程研究是十分必要的。热分析方法在了解先驱物热分解反应的物理…  相似文献   

17.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

18.
Hydrogen bonded C–H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, nY, and vacant anti-σ-bond C–H of proton donor was analyzed and estimates of second order perturbation energy Е(2) characterizing donor–acceptor nY → σC-H* charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the ЕnY→σ*C-H(2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent С–H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.  相似文献   

19.
Two novel borates [(CH3)3NH][B5O6(OH)4] (I) and Na2[H2TMED][B7O9(OH)5]2 (II) have been synthesized under solvothermal conditions, and characterized by elemental analyses, FT-IR spectroscopy, and single crystal X-ray diffraction. Crystal data for I: monoclinic, P21/c, a = 9.3693(11) Å, b = 14.0375(17) Å, c = 10.0495(9) Å, β = 91.815(9)°, Z = 4. Crystal data for II: monoclinic, P21/c, a = 11.6329(2) Å, b = 11.9246(3) Å, c = 10.2528(2) Å, β = 100.178(2)°, Z = 4. Their crystal structures both have 3D supramolecular framework with large channels constructed by O–H···O hydrogen-bonding among the polyanions of [B5O6(OH)4]? or [B7O9(OH)5]2? clusters. The templating organic amines cations in I and II are both located in the channels of 3D supramolecular frameworks, respectively, and interact with the polyborate frameworks both electrostatically and via hydrogen bonds of N–H···O. Na2[H2TMED][B7O9(OH)5]2 is the first example of heptaborate co-templated by alkali metal and organic base, which is also rare in borates. The photoluminescence property of the synthetic sample of Na2[H2TMED][B7O9(OH)5]2 in the solid state at room temperature was also investigated by fluorescence spectrophotometer.  相似文献   

20.
The changes in stabilization energy upon the formation of intermolecular hydrogen, dihydrogen and lithium bond complexes between C2B3H7, LiH and HF have been investigated using MP2 method with aug-cc-pVDZ basis set. The interaction of HF with nido-C2B3H7 could occur through the formation of B–H···H–F, C–H···F–H and B–C···H–F classical and non-classical hydrogen bonds. The B–C bonds in backbone of the C2B3H7 as electron donor interact with σ* orbital of HF as electron acceptor. Also interaction of LiH with nido-C2B3H7 resulted in B–C···Li–H and B–H···LiH lithium bonds as well as C–H···H–Li dihydrogen bond complexes. In some of these complexes, LiH interacts with B–C bonds. Results are indicating that more stable complexes belong to interaction of HF and LiH with backbone of the nido-C2B3H7. The AIM and NBO methods were used to analyze the intermolecular interactions; also the electron density at the bond critical point and the charge transfer of obtained complexes were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号