共查询到20条相似文献,搜索用时 15 毫秒
1.
The subgradient extragradient method can be considered as an improvement of the extragradient method for variational inequality problems for the class of monotone and Lipschitz continuous mappings. In this paper, we propose two new algorithms as combination between the subgradient extragradient method and Mann-like method for finding a common element of the solution set of a variational inequality and the fixed point set of a demicontractive mapping. 相似文献
2.
In this paper, we introduce and study a new hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of variational inequalities for a ξ-Lipschitz continuous and relaxed (m,v)-cocoercive mappings in Hilbert spaces. Then, we prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm which solves some optimization problems under some suitable conditions. Our results extend and improve the recent results of Yao et al. [Y. Yao, M.A. Noor, S. Zainab and Y.C. Liou, Mixed equilibrium problems and optimization problems, J. Math. Anal. Appl (2009). doi:10.1016/j.jmaa.2008.12.005] and Gao and Guo [X. Gao and Y. Guo, Strong convergence theorem of a modified iterative algorithm for Mixed equilibrium problems in Hilbert spaces, J. Inequal. Appl. (2008). doi:10.1155/2008/454181] and many others. 相似文献
3.
In this article, we introduce and consider a general system of variational inequalities. Using the projection technique, we suggest and analyse new iterative methods for this system of variational inequalities. We also study the convergence analysis of the new iterative method under certain mild conditions. Since this new system includes the system of variational inequalities involving the single operator, variational inequalities and related optimization problems as special cases, results obtained in this article continue to hold for these problems. Our results improve and extend the recent ones announced by many others. 相似文献
4.
The purpose of this paper is to investigate the problem of finding the common element of the set of common fixed points of a countable family of nonexpansive mappings, the set of an equilibrium problem and the set of solutions of the variational inequality prob- lem for a relaxed cocoercive and Lipschitz continuous mapping in Hilbert spaces. Then, we show that the sequence converges strongly to a common element of the above three sets under some parameter controlling conditions, which are connected with Yao, Liou, Yao[17], Takahashi[12] and many others. 相似文献
5.
The approximate solvability of a generalized system for relaxed cocoercive mixed variational inequality is studied by using the resolvent operator technique. The results presented in this paper are more general and include many previously known results as special cases. 相似文献
6.
In this paper, we introduce and study a hybrid extragradient method for finding solutions of a general variational inequality
problem with inverse-strongly monotone mapping in a real Hilbert space. An iterative algorithm is proposed by virtue of the
hybrid extragradient method. Under two sets of quite mild conditions, we prove the strong convergence of this iterative algorithm
to the unique common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the general
variational inequality problem, respectively.
L. C. Zeng’s research was partially supported by the National Science Foundation of China (10771141), Ph.D. Program Foundation
of Ministry of Education of China (20070270004), and Science and Technology Commission of Shanghai Municipality grant (075105118).
J. C. Yao’s research was partially supported by a grant from the National Science Council of Taiwan. 相似文献
7.
《Optimization》2012,61(9):1119-1132
We present two extensions of Korpelevich's extragradient method for solving the variational inequality problem (VIP) in Euclidean space. In the first extension, we replace the second orthogonal projection onto the feasible set of the VIP in Korpelevich's extragradient method with a specific subgradient projection. The second extension allows projections onto the members of an infinite sequence of subsets which epi-converges to the feasible set of the VIP. We show that in both extensions the convergence of the method is preserved and present directions for further research. 相似文献
8.
Extragradient methods for differential variational inequality problems and linear complementarity systems 下载免费PDF全文
S. Z. Fatemi M. Shamsi Farid Bozorgnia 《Mathematical Methods in the Applied Sciences》2017,40(18):7201-7217
In this paper, 2 extragradient methods for solving differential variational inequality (DVI) problems are presented, and the convergence conditions are derived. It is shown that the presented extragradient methods have weaker convergence conditions in comparison with the basic fixed‐point algorithm for solving DVIs. Then the linear complementarity systems, as an important and practical special case of DVIs, are considered, and the convergence conditions of the presented extragradient methods are adapted for them. In addition, an upper bound for the Lipschitz constant of linear complementarity systems is introduced. This upper bound can be used for adjusting the parameters of the extragradient methods, to accelerate the convergence speed. Finally, 4 illustrative examples are considered to support the theoretical results. 相似文献
9.
《Optimization》2012,61(5):553-573
Implicit and explicit viscosity methods for finding common solutions of equilibrium and hierarchical fixed points are presented. These methods are used to solve systems of equilibrium problems and variational inequalities where the involving operators are complements of nonexpansive mappings. The results here are situated on the lines of the research of the corresponding results of Moudafi [Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse Probl. 23 (2007), pp. 1635–1640; Weak convergence theorems for nonexpansive mappings and equilibrium problems, to appear in JNCA], Moudafi and Maingé [Towards viscosity approximations of hierarchical fixed-points problems, Fixed Point Theory Appl. Art ID 95453 (2006), 10 pp.; Strong convergence of an iterative method for hierarchical fixed point problems, Pac. J. Optim. 3 (2007), pp. 529–538; Coupling viscosity methods with the extragradient algorithm for solving equilibrium problems, to appear in JNCA], Yao and Liou [Weak and strong convergence of Krasnosel'ski?–Mann iteration for hierarchical fixed point problems, Inverse Probl. 24 (2008), 015015 8 pp.], S. Takahashi and W. Takahashi [Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2006), pp. 506–515], Xu [Viscosity method for hierarchical fixed point approach to variational inequalities, preprint.], Combettes and Hirstoaga [Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), pp. 117–136] and Plubtieng and Pumbaeang [A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007), pp. 455–469.]. 相似文献
10.
In this paper, we introduce a new iterative process for finding the common element of the set of fixed points of a nonexpansive mapping, the set of solutions of an equilibrium problem and the solutions of the variational inequality problem for two inverse-strongly monotone mappings. We introduce a new viscosity relaxed extragradient approximation method which is based on the so-called relaxed extragradient method and the viscosity approximation method. We show that the sequence converges strongly to a common element of the above three sets under some parametric controlling conditions. Moreover, using the above theorem, we can apply to finding solutions of a general system of variational inequality and a zero of a maximal monotone operator in a real Hilbert space. The results of this paper extended, improved and connected with the results of Ceng et al., [L.-C. Ceng, C.-Y. Wang, J.-C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Meth. Oper. Res. 67 (2008), 375–390], Plubtieng and Punpaeng, [S. Plubtieng, R. Punpaeng, A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Appl. Math. Comput. 197 (2) (2008) 548–558] Su et al., [Y. Su, et al., An iterative method of solution for equilibrium and optimization problems, Nonlinear Anal. 69 (8) (2008) 2709–2719], Li and Song [Liwei Li, W. Song, A hybrid of the extragradient method and proximal point algorithm for inverse strongly monotone operators and maximal monotone operators in Banach spaces, Nonlinear Anal.: Hybrid Syst. 1 (3) (2007), 398-413] and many others. 相似文献
11.
12.
In this paper, we introduce a new iterative process for finding the common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of the variational inequality problem for an α-inverse-strongly-monotone, by combining an modified extragradient scheme with the viscosity approximation method. We prove
a strong convergence theorem for the sequences generated by this new iterative process.
相似文献
13.
In this paper, we investigate the problem for finding the set of solutions for equilibrium problems, the set of solutions of the variational inequalities for k-Lipschitz continuous mappings and fixed point problems for nonexpansive mappings in a Hilbert space. We introduce a new viscosity extragradient approximation method which is based on the so-called viscosity approximation method and extragradient method. We show that the sequence converges strongly to a common element of the above three sets under some parameters controlling conditions. Finally, we utilize our results to study some convergence problems for finding the zeros of maximal monotone operators. Our results are generalization and extension of the results of Kumam [P. Kumam, Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space, Turk. J. Math. 33 (2009) 85–98], Wangkeeree [R. Wangkeeree, An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings, Fixed Point Theory and Applications, 2008, Article ID 134148, 17 pages, doi:10.1155/2008/134148], Yao et al. [Y. Yao, Y.C. Liou, R. Chen, A general iterative method for an finite family of nonexpansive mappings, Nonlinear Analysis 69 (5–6) (2008) 1644–1654], Qin et al. [X. Qin, M. Shang, Y. Su, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear Analysis (69) (2008) 3897–3909], and many others. 相似文献
14.
In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of a general system of variational inequalities for a cocoercive mapping in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets. Our results extend and improve the corresponding results of Ceng, Wang, and Yao [L.C. Ceng, C.Y. Wang, J.C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res. 67 (2008) 375–390], Ceng and Yao [L.C. Ceng, J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. doi:10.1016/j.cam.2007.02.022], Takahashi and Takahashi [S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506–515] and many others. 相似文献
15.
Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities 总被引:3,自引:0,他引:3
Lu-Chuan Ceng Chang-yu Wang Jen-Chih Yao 《Mathematical Methods of Operations Research》2008,67(3):375-390
In this paper, we introduce and study a relaxed extragradient method for finding solutions of a general system of variational
inequalities with inverse-strongly monotone mappings in a real Hilbert space. First, this system of variational inequalities
is proven to be equivalent to a fixed point problem of nonexpansive mapping. Second, by using the demi-closedness principle
for nonexpansive mappings, we prove that under quite mild conditions the iterative sequence defined by the relaxed extragradient
method converges strongly to a solution of this system of variational inequalities. In addition, utilizing this result, we
provide some applications of the considered problem not just giving a pure extension of existing mathematical problems.
J.-C. Yao’s research was partially supported by a grant from the National Science Council. 相似文献
16.
《Optimization》2012,61(6):873-885
Many problems to appear in signal processing have been formulated as the variational inequality problem over the fixed point set of a nonexpansive mapping. In particular, convex optimization problems over the fixed point set are discussed, and operators which are considered to the problems satisfy the monotonicity. Hence, the uniqueness of the solution of the problem is not always guaranteed. In this article, we present the variational inequality problem for a monotone, hemicontinuous operator over the fixed point set of a firmly nonexpansive mapping. The main aim of the article is to solve the proposed problem by using an iterative algorithm. To this goal, we present a new iterative algorithm for the proposed problem and its convergence analysis. Numerical examples for the proposed algorithm for convex optimization problems over the fixed point set are provided in the final section. 相似文献
17.
Dang Van Hieu 《Optimization》2017,66(12):2291-2307
The paper proposes a new shrinking gradient-like projection method for solving equilibrium problems. The algorithm combines the generalized gradient-like projection method with the monotone hybrid method. Only one optimization program is solved onto the feasible set at each iteration in our algorithm without any extra-step dealing with the feasible set. The absence of an optimization problem in the algorithm is explained by constructing slightly different cutting-halfspace in the monotone hybrid method. Theorem of strong convergence is established under standard assumptions imposed on equilibrium bifunctions. An application of the proposed algorithm to multivalued variational inequality problems (MVIP) is presented. Finally, another algorithm is introduced for MVIPs in which we only use a value of main operator at the current approximation to construct the next approximation. Some preliminary numerical experiments are implemented to illustrate the convergence and computational performance of our algorithms over others. 相似文献
18.
In this paper, we give a hybrid extragradient iterative method for finding the approximate element of the common set of solutions of a generalized equilibrium problem, a system of variational inequality problems, a variational inequality problem and a fixed point problem for a strictly pseudocontractive mapping in a real Hilbert space. Further we establish a strong convergence theorem based on this method. The results presented in this paper improves and generalizes the results given in Yao et al. [36] and Ceng et al. [7], and some known corresponding results in the literature. 相似文献
19.
In this paper, we introduce a new iterative scheme to investigate the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of solutions of a variational inequality problem for a relaxed cocoercive mapping by viscosity approximate methods. Our results improve and extend the recent ones announced by Chen et al. [J.M. Chen, L.J. Zhang, T.G. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, doi:10.1016/j.jmaa.2006.12.088], Iiduka and Tahakshi [H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005) 341–350], Yao and Yao [Y.H. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput, doi:10.1016/j.amc.2006.08.062] and Many others. 相似文献