首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M(+)(H(2)O)(n) and M(+)(H(2)O)(n)Ar ions (M=Cu and Ag) are studied for exploring coordination and solvation structures of noble-metal ions. These species are produced in a laser-vaporization cluster source and probed with infrared (IR) photodissociation spectroscopy in the OH-stretch region using a triple quadrupole mass spectrometer. Density functional theory calculations are also carried out for analyzing the experimental IR spectra. Partially resolved rotational structure observed in the spectrum of Ag(+)(H(2)O)(1) x Ar indicates that the complex is quasilinear in an Ar-Ag(+)-O configuration with the H atoms symmetrically displaced off axis. The spectra of the Ar-tagged M(+)(H(2)O)(2) are consistent with twofold coordination with a linear O-M(+)-O arrangement for these ions, which is stabilized by the s-d hybridization in M(+). Hydrogen bonding between H(2)O molecules is absent in Ag(+)(H(2)O)(3) x Ar but detected in Cu(+)(H(2)O)(3) x Ar through characteristic changes in the position and intensity of the OH-stretch transitions. The third H(2)O attaches directly to Ag(+) in a tricoordinated form, while it occupies a hydrogen-bonding site in the second shell of the dicoordinated Cu(+). The preference of the tricoordination is attributable to the inefficient 5s-4d hybridization in Ag(+), in contrast to the extensive 4s-3d hybridization in Cu(+) which retains the dicoordination. This is most likely because the s-d energy gap of Ag(+) is much larger than that of Cu(+). The fourth H(2)O occupies the second shells of the tricoordinated Ag(+) and the dicoordinated Cu(+), as extensive hydrogen bonding is observed in M(+)(H(2)O)(4) x Ar. Interestingly, the Ag(+)(H(2)O)(4) x Ar ions adopt not only the tricoordinated form but also the dicoordinated forms, which are absent in Ag(+)(H(2)O)(3) x Ar but revived at n=4. Size dependent variations in the spectra of Cu(+)(H(2)O)(n) for n=5-7 provide evidence for the completion of the second shell at n=6, where the dicoordinated Cu(+)(H(2)O)(2) subunit is surrounded by four H(2)O molecules. The gas-phase coordination number of Cu(+) is 2 and the resulting linearly coordinated structure acts as the core of further solvation processes.  相似文献   

2.
Singly and doubly charged chromium-water ion-molecule complexes are produced by laser vaporization in a pulsed-nozzle cluster source. These species are detected and mass-selected in a specially designed time-of-flight mass spectrometer. Vibrational spectroscopy is measured for these complexes in the O-H stretching region using infrared photodissociation spectroscopy and the method of rare gas atom predissociation. Infrared excitation is not able to break the ion-water bonds in these systems, but it leads to elimination of argon, providing an efficient mechanism for detecting the spectrum. The O-H stretches for both singly and doubly charged complexes are shifted to frequencies lower than those for the free water molecule, and the intensity of the symmetric stretch band is strongly enhanced relative to the asymmetric stretch. Partially resolved rotational structure for both complexes shows that the H-O-H bond angle is greater than it is in the free water molecule. These polarization-induced effects are enhanced in the doubly charged ion relative to its singly charged analog.  相似文献   

3.
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.  相似文献   

4.
Dissociative recombination (DR) of the water cluster ions H(+)(H(2)O)(3) and D(+)(D(2)O)(3) with electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). For the first time, absolute DR cross sections have been measured for H(+)(H(2)O)(3) in the energy range of 0.001-0.8 eV, and relative cross sections have been measured for D(+)(D(2)O)(3) in the energy range of 0.001-1.0 eV. The DR cross sections for H(+)(H(2)O)(3) are larger than previously observed for H(+)(H(2)O)(n) (n=1,2), which is in agreement with the previously observed trend indicating that the DR rate coefficient increases with size of the water cluster ion. Branching ratios have been determined for the dominating product channels. Dissociative recombination of H(+)(H(2)O)(3) mainly results in the formation of 3H(2)O+H (probability of 0.95+/-0.05) and with a possible minor channel resulting in 2H(2)O+OH+H(2) (0.05+/-0.05). The dominating channels for DR of D(+)(D(2)O)(3) are 3D(2)O+D (0.88+/-0.03) and 2D(2)O+OD+D(2) (0.09+/-0.02). The branching ratios are comparable to earlier DR results for H(+)(H(2)O)(2) and D(+)(D(2)O)(2), which gave 2X(2)O+X (X=H,D) with a probability of over 0.9.  相似文献   

5.
Nickel cation-acetylene complexes of the form Ni(+)(C(2)H(2))(n), Ni(+)(C(2)H(2))Ne, and Ni(+)(C(2)H(2))(n)Ar(m) (n = 1-4) are produced in a molecular beam by pulsed laser vaporization. These ions are size-selected and studied in a time-of-flight mass spectrometer by infrared laser photodissociation spectroscopy in the C-H stretch region. The fragmentation patterns indicate that the coordination number is 4 for this system. The n = 1-4 complexes with and without rare gas atoms are also investigated with density functional theory. The combined IR spectra and theory show that pi-complexes are formed for the n = 1-4 species, causing the C-H stretches in the acetylene ligands to shift to lower frequencies. Theory reveals that there are low-lying excited states nearly degenerate with the ground state for all the Ni(+)(C(2)H(2))(n) complexes. Although isomeric structures are identified for rare gas atom binding at different sites, the attachment of rare gas atoms results in only minor perturbations on the structures and spectra for all complexes. Experiment and theory agree that multiple acetylene binding takes place to form low-symmetry structures, presumably due to Jahn-Teller distortion and/or ligand steric effects. The fully coordinated Ni(+)(C(2)H(2))(4) complex has a near-tetrahedral structure.  相似文献   

6.
The gas phase infrared spectrum (3250-3810 cm-1) of the singly hydrated ammonium ion, NH4+(H2O), has been recorded by action spectroscopy of mass selected and isolated ions. The four bands obtained are assigned to N-H stretching modes and to O-H stretching modes. The N-H stretching modes observed are blueshifted with respect to the corresponding modes of the free NH4+ ion, whereas a redshift is observed with respect to the modes of the free NH3 molecule. The O-H stretching modes observed are redshifted when compared to the free H2O molecule. The asymmetric stretching modes give rise to rotationally resolved perpendicular transitions. The K-type equidistant rotational spacings of 11.1(2) cm-1 (NH4+) and 29(3) cm-1 (H2O) deviate systematically from the corresponding values of the free molecules, a fact which is rationalized in terms of a symmetric top analysis. The relative band intensities recorded compare favorably with predictions of high level ab initio calculations, except on the nu3(H2O) band for which the observed value is about 20 times weaker than the calculated one. The nu3(H2O)/nu1(H2O) intensity ratios from other published action spectra in other cationic complexes vary such that the nu3(H2O) intensities become smaller the stronger the complexes are bound. The recorded ratios vary, in particular, among the data collected from action spectra that were recorded with and without rare gas tagging. The calculated anharmonic coupling constants in NH4+(H2O) further suggest that the coupling of the nu3(H2O) and nu1(H2O) modes to other cluster modes indeed varies by orders of magnitude. These findings together render a picture of a mode specific fragmentation dynamic that modulates band intensities in action spectra with respect to absorption spectra. Additional high level electronic structure calculations at the coupled-cluster singles and doubles with a perturbative treatment of triple excitations [CCSD(T)] level of theory with large basis sets allow for the determination of an accurate binding energy and enthalpy of the NH4+(H2O) cluster. The authors' extrapolated values at the CCSD(T) complete basis set limit are De [NH4+-(H2O)]=-85.40(+/-0.24) kJ/mol and DeltaH(298 K) [NH4+-(H2O)]=-78.3(+/-0.3) kJ/mol (CC2), in which double standard deviations are indicated in parentheses.  相似文献   

7.
The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H(+)(H(2)O)(7). For H(+)(H(2)O)(7) the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Moller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H(+)(H(2)O)(7) [though nearly isoenergetic to the 3D structure for D(+)(D(2)O)(7)]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.  相似文献   

8.
Gold is noble, but excited gold is reactive. Reactions of laser-ablated copper, silver, and gold with H(2) in excess argon, neon, and pure hydrogen during condensation at 3.5 K give the MH molecules and the (H(2))MH complexes as major products and the MH(2)(-) and AuH(4)(-) anions as minor products. These new molecular anions are identified from matrix infrared spectra with isotopic substitution (HD, D(2), and H(2) + D(2)) and comparison to frequencies calculated by density functional theory. The stable linear MH(2)(-) anions are unique in that their corresponding neutral MH(2) molecules are higher in energy than M + H(2) and thus unstable to M + H(2) decomposition. Infrared spectra are observed for the bending modes of AuH(2), AuHD, and AuD(2) in solid H(2), HD, and D(2), respectively. The observation of square-planar AuH(4)(-) attests the stability of the higher Au(III) oxidation state for gold. The synthesis of CuH(2)(-) in solid compounds has potential for use in hydrogen storage.  相似文献   

9.
The hydrated nucleoside anions, uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1), have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine(-)(H(2)O)(1) and its calculated value in the companion article by S. Kim and H. F. Schaefer III.  相似文献   

10.
We employed a four-step searching/screening approach to determine best candidates for the global minima of (H2O)11 and (H2O)13. This approach can be useful when there exist a large number of low-lying and near-isoenergetic isomers, many of which have the same oxygen-skeleton structure. On the two new candidates for the global minimum of (H2O)11, one isomer can be viewed as placing the 11th molecule onto the side of the global minimum of (H2O)10 and the other can be viewed as removing the 12th molecule from the middle layer of the global minimum of (H2O)12. The three leading lowest-energy clusters of (H2O)13 can all be built starting from the global minimum of (H2O)12, with the difference being in the location of the 13th water molecule.  相似文献   

11.
A theoretical study on the structures and vibrational spectra of M+(H2O)Ar0‐1 (M = Cu, Ag, Au) complexes was performed using ab initio method. Geometrical structures, binding energies (BEs), OH stretching vibrational frequencies, and infrared (IR) absorption intensities are investigated in detail for various isomers with Ar atom bound to different binding sites of M+(H2O). CCSD(T) calculations predict that BEs are 14.5, 7.5, and 14.4 kcal/mol for Ar atom bound to the noble metal ion in M+(H2O)Ar (M = Cu, Ag, Au) complexes, respectively, and the corresponding values have been computed to be 1.5, 1.3, and 2.1 kcal/mol when Ar atom attaches to a H atom of water molecule. The former structure is predicted to be more stable than the latter structure. Moreover, when compared with the M+(H2O) species, tagging Ar atom to metal cation yields a minor perturbation on the IR spectra, whereas binding Ar atom to an OH site leads to a large redshift in OH stretching vibrations. The relationships between isomers and vibrational spectra are discussed. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
We study the solvation of HC2- and O2- with acetylene ligands by means of midinfrared photodissociation spectroscopy in the CH stretching region, monitoring C2H2 evaporation upon infrared photon absorption by the parent cluster ions. Our findings are interpreted with the help of density functional theory. The infrared spectra indicate that while the binding generally occurs through ionic H bonds, there are two different classes of ligands which differ in their binding strength. This holds true for both core ions, even though their electronic structures and charge distributions are very different.  相似文献   

13.
The prominent (SiO(2))(8)O(2)H(3) (-) mass peak resulting from the laser ablation of hydroxylated silica, attributed to magic cluster formation, is investigated employing global optimization with a dedicated interatomic potential and density functional calculations. The low-energy spectra of cluster isomers are calculated for the closed shell clusters: (SiO(2))(8)OH(-) and (SiO(2))(8)O(2)H(3) (-) giving the likely global minima in each case. Based upon our calculated cluster structures and energetics, and further on the known experimental details, it is proposed that the abundant formation of (SiO(2))(8)O(2)H(3) (-) clusters is largely dependent on the high stability of the (SiO(2))(8)OH(-) ground state cluster. Both the (SiO(2))(8)O(2)H(3) (-) and (SiO(2))(8)OH(-) ground state clusters are found to exhibit cagelike structures with the latter containing a particularly unusual tetrahedrally four-coordinated oxygen center not observed before in either bulk silica or silica clusters. The bare ground state (SiO(2))(8)O(2-) cluster ion core is also found to have four tetrahedrally symmetric Si==O terminations making it a possible candidate, when combined with suitable cations, for extended cluster-based structures/materials.  相似文献   

14.
The decrease in the reaction rate for the charge separation in SO(4) (2-)(H(2)O)(n) with increasing cluster size is examined by first-principles calculations of the energetics, activation barriers, and thermal stability for n=3-7. The key factor governing the charge separation is the difference in the strength of solvation interaction: while interaction with water is strong for the reactant SO(4) (2-) and the product OH(-), it is relatively weak for HSO(4) (-). It gives rise to a barrier for charge separation as SO(4) (2-) is transformed into HSO(4) (-) and OH(-), although the overall reaction energy is exothermic. The barrier is high when more than two H(2)O are left to solvate HSO(4) (-), as in the case of symmetric solvation structure and in the case of large clusters. The entropy is another important factor since the potential surface is floppy and the thermal motion facilitates the symmetric distribution of H(2)O around SO(4) (2-), which leads to the gradual reduction in reaction rate and the eventual switch-off of charge separation as cluster size increases. The experimentally observed products for n=3-5 are explained by the thermally most favorable isomer at each size, obtained by ab initio molecular-dynamics simulations rather than by the isomer with the lowest energy.  相似文献   

15.
16.
The infrared spectra of the (H(2)O)n-SO(2) complexes trapped in argon matrices have been investigated using Fourier transform infrared spectroscopy. In addition to the 1:1 and 2:1 complexes, the first spectroscopic evidence for the 3:1 complex has been obtained from the spectra of the SO stretching and the OH stretching modes. The observed frequency shifts in the bonded OH stretching region indicate that the hydrogen bonds of the 2:1 and 3:1 complexes are strengthened compared to that of the 1:1 complex, which suggests the cyclic structure of the complexes.  相似文献   

17.
Weakly coordinated [Cu(pcp)(H2O)n] complexes are formed in aqueous solution, at room temperature, by interaction of P,P'-diphenylmethylene diphosphinic acid (H2pcp) with copper(II) ions. However, heating of the solutions gives rise to the formation of two extended metal-oxygen networks of formulas [Cu(pcp)(H2O)2] x H2O, 1, and [Cu(pcp)(H2O)2], 2. In the presence of 2,2'-bipyridyl (bipy) the diamine derivative [Cu(pcp)(bipy)(H2O)], 4, has been isolated. Complex 1 easily loses water to form a monohydrated derivative [Cu(pcp)H2O], 3, whereas 2 is completely dehydrated after prolonged heating at 150 degrees C, under vacuum. The compounds 1 and 2 have substantially different solid-state structures as shown by X-ray powder diffraction spectra, IR spectra, and thermogravimetric analyses. Consistently, the two complexes cannot be directly interconverted and present different dehydration pathways. Rehydration of these materials in both cases allows quantitative formation of 1. X-ray analysis established that the structure of 1 consists of a corrugated two-dimensional layered polymeric array, where infinite zigzag chains of Cu centers and bridging phenylphosphinate ligands are linked together through strong hydrogen-bonding interactions; the structure of 4 consists of monodimensional polymers, where the hydrogen-bonding interactions play an essential bridging role in the extended architecture. In both structures the metal center displays a five-coordinate environment with approximate square pyramidal geometry, with the pcp ligand acting as bidentate and monodentate in 1 and solely as bidentate in 4. In 1 the coordination sphere is completed through water molecules; in 4, through water and diamine ligands. The thermogravimetric analyses of the complexes are compared with those of the related hybrids [M(pcp)(H2O)3] x H2O, where M = Mn, Co, or Ni, confirming that noncoordinated water molecules also play a basic role in determining the molecular packing.  相似文献   

18.
In this work, the potential energy curves of several low-lying excited states of M+(H2O)n = 1-4 (M = Li and Na) clusters with one M─O bond, related to the stretching of their M─O bond, were calculated in the gas phase. The time-dependent density functional theory and direct-symmetry-adapted cluster-configuration interaction were used in this study separately. Theoretical calculations showed that the charge transfer occurred between M+ and (H2O)n in the excited clusters so that the neutral metal atom was obtained at the dissociation limit of the potential curves. The excited potential curves of clusters were also calculated in the presence of the electrostatic field of water (EFW), and it was found that the charge transfer was blocked in the presence of EFW. The effect of the size of the (H2O)n cluster on the shape of the excited potential curves was investigated to observe how the M─O bond was affected in the excited states depending on the (H2O)n size. It was found that the increase in the size of the (H2O)n cluster increased the number of bonding excited potential curves. The difference between the electron density of the excited and ground electronic states was calculated to see how the charge transfer was affected by the size of the (H2O)n cluster.  相似文献   

19.
A disproportionation process of a metastable AlCl solution with a simultaneous ligand exchange-Cl is substituted by N(SiMe(3))(2)-leads to a [Al(69)[N(SiMe(3))(2)](18)](3-) cluster compound that can be regarded as an intermediate on the way to bulk metal formation. The cluster was characterized by an X-ray crystal structural analysis. Regarding its structure and the packing within the crystal, this metalloid cluster with 4 times more Al atoms than ligands is compared to the [Al(77)N(SiMe(3))(2)](20)](2-) cluster that has been published four years ago. Although there is a similar packing density of the Al atoms in both clusters as well as in Al metal, the X-ray structural analysis shows significant differences in topology and distance proportions. The differences between these-at a first glance almost identical-Al clusters demonstrate that results of physical measuring, e.g., of nanostructured surfaces which carry supposedly identical cluster species, have to be interpreted with great caution.  相似文献   

20.
The photoelectron images of Ag(-)(H(2)O)(x) (x=1,2) and AgOH(-)(H(2)O)(y) (y=0-4) are reported. The Ag(-)(H(2)O)(1,2) anionic complexes have similar characteristics to the other two coinage metal-water complexes that can be characterized as metal atomic anion solvated by water molecules with the electron mainly localized on the metal. The vibrationally well-resolved photoelectron spectrum allows the adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of AgOH(-) to be determined as 1.18(2) and 1.24(2) eV, respectively. The AgOH(-) anion interacts more strongly with water molecules than the Ag(-) anion. The photoelectron spectra of Ag(-)(H(2)O)(x) and AgOH(-)(H(2)O)(y) show a gradual increase in ADE and VDE with increasing x and y due to the solvent stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号