首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a scheme for cloning an arbitrary unknown two-qubit state and its orthogonal complement state with the assistance from the state preparer. Our scheme includes two stages. The first stage requires a quantum teleportation process, in which an arbitrary unknown two-qubit state can be deterministically teleported from the sender to the receiver with χ-type entangled states as the quantum channel. In the second stage, with the assistance of the state preparer, either a perfect copy or an orthogonal complement state of an arbitrary unknown two-qubit state can be obtained with a certain probability.  相似文献   

2.
We present a scheme for N-photon Greenberger-Horne-Zeilinger (GHZ) state analysis using hyperentanglement in polarization and time-bin degrees of freedom. The scheme only needs linear optics elements and single-photon detectors, which is feasible with current technology. The set of 2 N mutual orthogonal states can be unambiguously distinguished and the protocol is expected to find useful applications in quantum information processing.  相似文献   

3.
In this paper, we propose a protocol which can realize quantum cloning of an unknown tripartite entangled state and its orthogonal complement state with assistance from a state preparer. The first stage of the protocol requires usual teleportation via three entangled particle pairs as quantum channel. In the second stage of the protocol, the perfect copies and complement copies of an unknown state can be produced with the assistance (through a tripartite projective measurement) of the state preparer. We also present a scheme for the teleportation by using non-maximally entangled quantum channel. It is shown that the clones and complement clones of the unknown state can be obtained with certain probability in the latter scheme.  相似文献   

4.
Recently Zhu (Int. J. Theor. Phys. 53, 4095, 2014) had shown that using GHZ-like states as quantum channel, it is possible to teleport an arbitrary unknown two-qubit state. We investigate this channel for the teleportation of an arbitrary N-qubit state. The strict proof through mathematical induction is presented and the rule for the receiver to reconstruct the desired state is explicitly derived in the most general case. We also discuss that if a system of quantum secret sharing of classical message is established, our protocol can be transformed to a N-qubit perfect controlled teleportation scheme from the controller’s point of view.  相似文献   

5.
王美玉  闫凤利 《中国物理 B》2011,20(12):120309-120309
In this paper, we investigate perfect quantum teleportation and dense coding by using an 2N-qubit W state channel. In the quantum teleportation scheme, an unknown N-qubit entangled state can be perfectly teleported. One ebit of entanglement and two bits of classical communication are consumed in the teleportation process, just like when using the Bell state channel. While N+1 bits of classical information can be transmitted by only sending N particles in the dense coding protocol.  相似文献   

6.
We present an explicit generalized protocol for probabilistic teleportation of an arbitrary N-qubit GHZ entangled state via only one non-maximally two-qubit entangled state. Without entanglement concentration, using standard Bell-state measurement and classical communication one cannot teleport the state with unit fidelity and unit probability. We show that by properly choosing the measurement basis it is possible to achieve unity fidelity transfer of the state. Compared with Gordon et al’s protocol [G. Gordon, G. Rigolin, Phys. Rev. A 73 (2006) 042309], this protocol has the advantage of transmitting much less qubits and classical information for teleporting an arbitrary N-qubit GHZ state.  相似文献   

7.
In this paper, a novel scheme is investigated for quantum teleportation (QT) and quantum state sharing (QSTS). The generalized seven-qubit Brown state |B 7〉 is used as information carrier. Firstly, for an arbitrary single-qubit state, we perfectly present a QT protocol and three QSTS ones, which is among three participants via |B 7〉. Then we make an overall comparison among three QSTS protocols and present an almost even distribution principle of particles. Secondly, for two- and three-qubit cases, based on the almost even distribution principle we design several QT and QSTS protocols. Finally, we mainly consider our scheme’s security against dishonest participant attacks. Furthermore, for an arbitrary N-qubit state, there is a conjecture that QT and QSTS can be designed by using the generalized (2N+1)-qubit Brown state |B 2N+1〉 in Eq. (3) (N≥2) in theoretical aspects.  相似文献   

8.
We propose a scheme for cloning unknown two-particle entangled state and its orthogonal complement state with assistance from a state preparer. Two stages were included in this scheme. The first stage requires usual teleportation by using a one-dimensional non-maximally four-particle cluster state as quantum channel, after Alice’s (the state sender) Bell measurement, Bob (the state receiver) can get the original state with certain probability. In the second stage, after having received Victor’s (the state preparer) classical message, the perfect copies and complement copies of an unknown state can be produced in Alice’s place, the probability of Alice to get the original state or its orthogonal complement state are calculated. Assisted cloning of an arbitrary unknown two-particle entangled state is discussed in the latter scheme.  相似文献   

9.
Tensor representation in teleportation and controlled teleportation   总被引:1,自引:0,他引:1  
We propose the tensor representation of teleportation and controlled teleportation. By using this representation, it is easy to describe the process of teleporting an unknown N-qubit state via a genuine 2N-qubit channel, and to find the necessary and sufficient condition of realizing a successful teleportation (which is determined by the measurement matrix Tα and the quantum channel parameter matrix X). For controlled teleportation, if composing tensor representation with graph, one can easily design any kind of controlled teleportation. As examples, we give a scheme of symmetrically controlled teleportation of two-qubit states and a scheme of representative network controlled of three-qubit states. This method can also be generalized to the controlled teleportation of N-qubit states.  相似文献   

10.
In this paper, we propose a protocol where one can realize reestablishment of an unknown state and its orthogonal complement state with a certain probability. In the first stage of the protocol, teleportation is performed between Alice (a sender) and Bob (a receiver) through a nonmaximally entangled quantum channel. In the process of teleportation, Alice performs nonmaximally entangled state measurement. In the second stage of the protocol, Victor(a state preparer) disentangles leftover nonmaximally entangled states by a single-particle measurement. With the assistance of Victor Alice can reestablish the original state or produce its orthogonal state.  相似文献   

11.
In this paper, we propose a protocol where one can realize reestablishment of an unknown state and its orthogonal complement state with a certain probability. In the first stage of the protocol, teleportation is performed between Alice (a sender) and Bob (a receiver) through a nonmaximally entangled quantum channel. In the process of teleportation, Alice performs nonmaximally entangled state measurement. In the second stage of the protocol, Victor (a state preparer) disentangles leftover nonmaximally entangled states by a single-particle measurement. With the assistance of Victor Alice can reestablish the original state or produce its orthogonal state.  相似文献   

12.
The effect of partially non-orthogonal basis states for several intercept and resend attacks of the Bennett–Brassard cryptographic protocol has been studied. The quantum error and the mutual information are computed for arbitrary angles η of the non-orthogonal basis states. It is found that the secure information depend strongly on the angle η, the probability of intercepts and resend attack and the number of eavesdropper. Besides, it is found that for any eavesdroppers number N ≥ 2, the protocol is more secured for (π/2) < η < (3π/2), while for N = 1, the protocol is more secured for η = π/2 or 3π/2 which correspond to the totally orthogonal basis states.  相似文献   

13.
任宝藏  华明  李涛  杜芳芳  邓富国 《中国物理 B》2012,21(9):90303-090303
We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional electron. For each nonlocal N-electron system, Alice first entangles it with the additional electron, and then she projects the additional electron onto an orthogonal basis for dividing the N-electron systems into two groups. In the first group, the N parties obtain a subset of N-electron systems in a maximally entangled state directly. In the second group, they obtain some less-entangled N-electron systems, which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability, which is the theoretical limit of an ECP, equal to the entanglement of the partially entangled state, and higher than the others. This ECP may be useful in quantum computers based on electron-spin systems in the future.  相似文献   

14.
A linear optical scheme is proposed to convert N?1 (N≥3) entangled two-photon pairs distributed among N parties into a N-photon W state using local operations and classical communication. In the scheme an arbitrary large-scale entanglement webs for photonic W state among multiple parties can be achieved with the certain success probability by locally operating two photons held by each of the parties. The scheme is feasible and within the reach of current experimental technology.  相似文献   

15.
李艳玲  冯健  於亚飞 《物理学报》2007,56(12):6797-6802
提出一种任意两粒子纠缠态1→2普适远程克隆方案. 此方案仅需一个特殊的四粒子纠缠态作为量子信道, 就可使处于空间不同位置的两个接收者分别以5/6的保真度得到任意输入态的近似拷贝, 该保真度远高于已有方案中的保真度. 将方案推广到任意两粒子纠缠态1→N(N>2)普适远程克隆的情况, 可使处于不同地点的N个接收者分别以(2N+1)/(3N)的保真度得到输入态的近似拷贝. 另外, 提出一种以上述单个特殊四粒子纠缠态作为量子信道, 在多目标量子比特受控非门和 关键词: 量子纠缠态 普适远程克隆 保真度  相似文献   

16.
We propose a protocol to concentrate partially entangled states of photons using entanglement reflector, which consists of a single electron spin confined in a charged quantum dot inside a single-sided microcavity. The outstanding advantage of the proposed scheme is its experimental simplicity and feasibility since it only needs to perform a single local measurement on electronic spins rather than a joint Bell-state measurement on photons. We then extend this scheme to concentrate N-photon Greenberger-Horne-Zeilinger state. Finally, we analyze the influence of various imperfections on the scheme.  相似文献   

17.
Qubits are realized as polarization state of photons or as superpositions of the spin states of electrons. In this paper we propose a scheme to probabilistically teleport an unknown arbitrary two-qubit state using a non-maximally entangled GHZ-like state and a non-maximally Bell state simultaneously as quantum channels. We also discuss the success probability of our scheme. We perform POVM in the protocol which is operationally advantageous. In our scheme we show that the non-maximal quantum resources perform better than maximal resources.  相似文献   

18.
We consider an N qubit system and show that in the symmetric subspace, S, a pure state is not globally entangled, iff it is a coherent state. It is also proven that in the orthogonal complement S all states are globally entangled.  相似文献   

19.
Nguyen Ba An 《Physics letters. A》2008,372(21):3778-3783
In this work we devise a scheme to teleport a type of unknown M-quNit state using only a single non-maximally entangled quNit-pair as the quantum channel. The fidelity is one while the success probability is less than one and depends on N but not on M. The scheme requires M−1 ancillary quNits and 1 qubit at the receiver's and the receiver should be capable of performing some quNit-quNit/qubit operations. The classical message that the teleporter must announce consists only of 2 Nits, though the full set of his/her measurement outcome is as huge as M+1 Nits.  相似文献   

20.
A high-fidelity scheme to generate N-photon generalized binomial states (NGBSs) in a single-mode high-Q cavity is proposed. A method to construct superpositions of exact orthogonal NGBSs is also provided. It is then shown that these states, for any value of N, may be used for a realization of a controlled-NOT gate, based on the dispersive interaction between the cavity field and a control two-level atom. The possible implementation of the schemes is finally discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号