共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
丁腈羟增韧环氧树脂形态与力学性能 总被引:4,自引:0,他引:4
研究了丁腈羟增韧环氧树脂的力学性能和形态结构,丁腈羟的用量、丁腈羟中丙烯腈的含量、固化条件对所形成的微区尺寸都有较大影响,并进一步影响固化物的力学性能。 相似文献
5.
丁腈羟增韧环氧树脂固化反应 总被引:2,自引:0,他引:2
丁腈羟增韧环氧树脂固化反应李绍英**韩孝族*刘振海张庆余(中国科学院长春应用化学研究所长春130022)关键词丁腈羟,增韧环氧树脂,固化反应动力学,DSC1996-05-04收稿,1996-09-17修回**现在河北轻化工学院化工设计研究所工作环氧树... 相似文献
6.
氯化聚氯乙烯(CPVC)具有优良的物理性能。但须严格控制加工温度,加工熔体粘度较大。近年,作者曾对CPVC与氯化聚乙烯(CPE)和丙烯酸酯共聚物(ACR)共混体的流变性质进行了研究。本文首次研究CPVC与环氧树脂(EP)共混体的流变性质与形态。 相似文献
7.
8.
用反相色谱研究了聚氯乙烯与聚氧乙烯的相容性,发现其共混物的经保留体积Vg23具有重量加和性,表明共混物可能发生了相分离,导出了相分离体系聚合物相互作用参数X23的近似关系式:x23=(x12-x13)^2/2,由此式可以解释x23对探针种类的依赖性,聚氯乙烯和聚氧乙烯共混体系的反相色谱实验结果基本符合这一关系式。 相似文献
9.
10.
用反相色谱研究了聚氯乙烯与聚氧乙烯的相容性,发现其共混物的比保留体积Vg23具有重量加和性,表明共混物可能发生了相分离。导出了相分离体系聚合物相互作用参数X23的近似关系式:X23=(X12-X13)2/2,由此式可以解释X23对探针种类的依赖性。聚氯乙烯和聚氧乙烯共混体系的反相色谱实验结果基本符合这一关系式。 相似文献
11.
Juliana Aristéia de Lima 《European Polymer Journal》2006,42(3):602-614
This work studied blends of PHB with epichlorohydrin elastomers, the PEP homopolymer and its copolymer with ethylene oxide, ECO. PHB is a microbial polyester, which is accumulated intracellularly by a large number of microorganisms, presenting characteristics of biodegradability and biocompatibility. It presents a high degree of crystallinity, so is a quite brittle material, and may undergo degradation when is kept for a relatively short time at a temperature above its melting point, about 180 °C. PEP and ECO are linear and amorphous elastomers, exhibit miscibility with many aliphatic polyesters and these elastomers have been used in various branches of technology, such as the automotive industry. The proposed systems combine a polymer with high crystallinity and biodegradability, PHB, with amorphous epichlorohydrin elastomers. Blends were prepared by casting from chloroform solution at different compositions (0, 20, 40, 50, 60, 80 and 100 wt% of PHB). The phase behavior of PHB/PEP and PHB/ECO blends were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and the morphology of the crystalline phase of PHB had been examined by optical microscopy. Blends of PHB/PEP and PHB/ECO have been described in literature as miscible. However, our results from the DSC and DMA show that PHB/PEP and PHB/ECO blends are immiscible. This behavior should be related to the molecular weight of polymers used in the present work, which is higher than the molecular weight of polymers used in the previous works. The crystallization kinetics of PHB is strongly influenced by the presence of the elastomeric phase. The degree of crystallinity of PHB/PEP blends decreases with an increase in the PEP content. PHB/ECO blends present degrees of crystallinity that can be considered nearly independent of the ECO content. Differences in the morphology of the crystalline phase were also observed, and these are attributed to the presence of elastomeric phase in the intraspherulitic zone. 相似文献
12.
Morphology, morphology development and mechanical properties of polystyrene/polybutadiene blends 总被引:1,自引:0,他引:1
Susan Joseph 《European Polymer Journal》2003,39(1):115-125
Polystyrene/polybutadiene (PS/PB) blends with different plastic/rubber ratios were prepared by melt mixing. A detailed investigation on phase morphology development of 30/70 wt.% PS/PB blends as a function of processing conditions was quantitatively analyzed. Morphology is developed at the initial stages of mixing. Suitable blending conditions resulting in optimum phase morphology were obtained at 180 °C, 60 rpm and at 8 min mixing time. Phase morphologies of the blends were also studied as a function of composition. Mechanical properties of the blends were measured. Attempts were made to correlate the morphologies with the properties. Parallel-Voids model has been applied to characterize phase morphology of these blends. 相似文献
13.
Minghai Wang Yingfeng Yu Guozhu Zhan Xiaolin Tang Shanjun Li 《Colloid and polymer science》2006,284(12):1379-1385
A high temperature thermosetting bisphenol A dicyanate (BADCy) was modified with a novel thermoplastic poly(ether-imide) (PEI) at various compositions. Fourier transform infrared spectroscopy was used to measure the conversion of BADCy. Curing kinetics of the BADCy/PEI blend were studied by the dynamic differential scanning calorimeter method. Morphologies of PEI-modified polycyanurates were investigated by scanning electron microscopy (SEM). It was found that the phase structures of the blends changed dramatically with the PEI content and molecular weight. The tensile results showed that the mechanical properties could be correlated with the morphologies. The blend with cocontinuous morphology had the highest tensile strength and elongation at break while the blend with ribbon-like morphology had the lowest one despite PEI molecular weight. 相似文献
14.
Idris Zembouai Mustapha Kaci Stéphane Bruzaud Aida Benhamida Yves-Marie Corre Yves Grohens 《Polymer Testing》2013,32(5):842-851
The paper aims to study blend properties of biodegradable polymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactide (PLA) prepared by melt mixing. Blend compositions based on PHBV/PLA were investigated according to the following weight ratios, i.e. 100/0, 75/25, 50/50, 25/75 and 0/100 wt%. The study showed through scanning electron microscopy (SEM) that blends of PHBV/PLA are not miscible. This is consistent with differential scanning calorimetry (DSC) data which indicate the presence of two distinct glass transition temperatures (Tg) and melting temperatures (Tm), attributed to the neat polymers, over all the range of blend compositions. Water and oxygen barrier properties of PHBV/PLA blends are significantly improved with increasing the PHBV content in the blend. Further, morphological analyzes indicated that increasing the PHBV content in the polymer blends results in increasing the PLA crystallinity due to the finely dispersed PHBV crystals acting as a filler and a nucleating agent for PLA. On the other hand, the addition of PLA to the blend results in a very impressive increase in the complex viscosity of PHBV. Moreover, the rheological data showed that, excluding the specific behavior of the neat polymers at low frequencies, i.e. less than 0.1 Hz, the complex viscosity of PHBV/PLA blends fits the mixing law well. 相似文献
15.
聚丁二烯-b-甲基丙烯酸甲酯共聚物的聚集态研究周庆业,张邦华,宋谋道,何炳林(南开大学高分子化学研究所,天津,300071)关键词共聚物,相分离,聚集态结构嵌段共聚物按其组成、合成及成型条件的不同可形成丰富的相结构[1],其动态力学性能,如在损耗模量... 相似文献
16.
A series of PB-g-SAN impact modifiers with different ratio of PB to SAN ranging from 20.6/79.4 to 91.9/8.1 were synthesized by seeded emulsion polymerization. ABS blends were prepared by blending these PB-g-SAN impact modifiers and SAN resin. The rubber concentration of these ABS blends was kept at a constant value of 15 wt%. The influences of different impact modifier on the mechanical behavior and morphology of ABS blends have been investigated. The dynamic mechanical analysis on ABS blends shows that Tg of the rubbery phase shifts to a lower temperature, (tan δ)max of the rubbery phase increases and then decreases with the increase of PB concentration in PB-g-SAN impact modifier. A uniform dispersion of rubber particles in the matrix can be observed when PB/SAN ratio in PB-g-SAN impact modifier is in the range from 20.6/79.4 to 71.7/28.3. When it exceeds 71.7/28.3, an agglomeration of rubber particles occurs. The mechanical tests indicate that the ABS blend, in which PB/SAN ratio in the impact modifier is 71.7/28.3, has the maximum impact strength and yield strength. 相似文献
17.
用透射电子显微镜和X射线衍射等方法研究了等规立构聚丙烯和无规立构聚丙烯共混物溶液浇铸膜的形态结构,结果表明,aPP的加入对iPP的形态结构有很大的影响。 相似文献
18.
共连续结构是不相容高分子共混物体系中的典型相结构。共连续共混物的机械性能、热性能、电性能以及阻隔性能等均由于两相的协同作用而得到显著改善。预测共连续共混物的性能无论是在工业生产还是在学术研究上都具有重要的意义。本文针对共连续共混物目前常用的性能预测模型进行了总结归纳,包括串并联模型、Kerner 模型、Davies 模型、Halpin-Tsai 模型、EBM 模型、SISS 模型、KISS 模型、Doi-Ohta 模型以及 Yu 模型等,讨论了这些模型的原理、适用性及优缺点,并对该领域下一步的研究方向进行了展望。 相似文献
19.
Rheological, morphological and thermo-mechanical responses of poly(lactic acid) (PLA)/ethylene-co-vinyl-acetate copolymer (EVA) blends at EVA volume fractions varying in the range of 0–0.35 were evaluated. The micro-structural analysis demonstrated dispersive mixing at low content and co-continuous morphology at 30 wt % of EVA in PLA. Dynamic rheology demonstrated enhanced storage modulus and complex viscosity (η*) with increase in frequency of the blends indicated strong phase interaction. Cole-Cole and Han plots indicated partial miscibility and incompatibility between the polymer matrix and the dispersed phase. Dynamic mechanical analysis (DMA) revealed slight increase in damping parameters which indicated interaction or reinforcement in the blends. Additionally, the thermogravimetric analysis (TGA) of the blends showed two step degradation and enhanced thermal stability. 相似文献