首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zusammenfassung Der Wärmeübergang bei turbulenter Film kondensation strömenden Dampfes an einer waagerechten ebenen Platte wurde mit Hilfe der Analogie zwischen Impuls-und Wärmeaustausch untersucht. Zur Beschreibung des Impulsaustausches im Film wurde ein Vierbereichmodell vorgestellt. Nach diesem Modell wird die wellige Phasengrenze als starre rauhe Wand angesehen. Die Abhängigkeit einer Schubspannungs-Nusseltzahl von der Film-Reynoldszahl und Prandtlzahl wurde berechnet und dargestellt.
A model for turbulent film condensation of flowing vapour
The heat transfer in turbulent film condensation of flowing vapour on a horizontal flat plate was investigated by means of the analogy between momentum and heat transfer. To describe the momentum transfer in the film a four-region model was presented. With this model the wavy interfacial surface is treated as a stiff rough wall. A shear Nusselt number has been calculated and represented as a function of film Reynolds number and Prandtl number.

Formelzeichen a Temperaturleitkoeffizient - k Mischungswegkonstante - k s äquivalente Sandkornrauhigkeit - Nu x lokale Schubspannungs-Nusseltzahl,Nu x=xxv/uw - Pr Prandtlzahl,Pr=v/a - Pr t turbulente Prandtlzahl,Pr t =m/q - q Wärmestromdichte q - R Wärmeübergangswiderstand - Rf Wärmeübergangswiderstand des Films - Re F Reynoldszahl der Filmströmung - T Temperatur - U, V Geschwindigkeitskomponenten des Dampfes in waagerechter und senkrechter Richtung - u, Geschwindigkeitskomponenten des Kondensats in waagerechter und senkrechter Richtung - V Querschwankungsgeschwindigkeit des Kondensats und des Dampfes - u /gtD Schubspannungsgeschwindigkeit an der Phasengrenze für die Dampfgrenzschicht, uD =(/)1/2 - u F Schubspannungsgeschwindigkeit an der Phasengrenze für den Kondensatfilm,u F =(/)1/2 - u w Schubspannungsgeschwindigkeit an der Wand der Kühlplatte,u w =(w/)1/2 - y Wandabstand - x Wärmeübergangskoeffizient - gemittelte Kondensatfilmdicke - s Dicke der zähen Schicht der Filmströmung an der welligen Phasengrenze - 4 Dicke der zähen Schicht der Filmströmung an der gemittelten glatten Phasengrenze - Wärmeleitzahl - dynamische Viskosität - v kinematische Viskosität - Dichte - Oberflächenspannung - w Wandschubspannung - Schubspannung an der Phasengrenzfläche - m turbulente Impulsaustauschgröße - q turbulente Wärmeaustauschgröße Indizes d Wert des Dampfes - w Wert an der Wand - x lokaler Wert inx - Wert an der Phasengrenze Stoffgrößen ohne Index gelten für das Kondensat  相似文献   

2.
Summary A single integral constitutive equation with strain dependent and factorized memory function is applied to describe the time dependence of the shear stress, the primary normal-stress difference, and, by using the stress-optical law, also the extinction angle and flow birefringence of a polystyrene melt in intermittent shear flows. The theoretical predictions are compared with measurements. The nonlinearity of the viscoelastic behaviour which is represented by the so called damping function, is approximated by a single exponential function with one parametern. The damping constantn as well as a discrete relaxation time spectrum of the melt can be determined from the frequency dependence of the loss and storage moduli.
Zusammenfassung Eine Zustandsgleichung vom Integraltyp mit einer deformationsabhängigen und faktorisierten Gedächtnisfunktion wird zur Beschreibung der Zeitabhängigkeit der Schubspannung, der ersten Normalspannungsdifferenz und, unter Verwendung des spannungsoptischen Gesetzes, auch des Auslöschungswinkels und der Strömungsdoppelbrechung einer Polystyrol-Schmelze bei Scherströmungen herangezogen. Die theoretischen Voraussagen werden mit Messungen verglichen. Die Nichtlinearität des viskoelastischen Verhaltens, repräsentiert durch die sogenannte Dämpfungsfunktion, wird durch eine einfache Exponentialfunktion mit nur einem Parametern angenähert. Die Dämpfungskonstanten kann, wie auch ein diskretes Relaxationszeitspektrum der Schmelze, aus der Frequenzabhängigkeit der Speicher- und Verlustmoduln bestimmt werden.

a i weight factor of thei-th relaxation time - a T shift factor - C stress-optical coefficient - n flow birefringence in the shear flow plane - shear relaxation modulus - G() shear storage modulus - () shear loss modulus - H() relaxation time spectrum - h( t,t 2 ) damping function - M w weight-average molecular weight - M n number-average molecular weight - n damping constant - p 12 shear stress - p 11p 22 primary normal stress difference - t current time - t past time - extinction angle - ( — i) delta function - time and shear rate dependent viscosity - | *| absolute value of the complex viscosity - shear rate - t,t relative shear strain between the statest andt - memory function - angular frequency - relaxation time - i i-th relaxation time of the line spectrum - time and shear rate dependent primary normal stress coefficient - s steady-state value - t time dependence - ° linear viscoelastic behaviour With 6 figures and 1 table  相似文献   

3.
In natural convection heat transfer through a thin horizontal layer of carbon dioxide, maxima in the equivalent thermal conductivities are obtained in the vicinity of the respective pseudocritical temperatures at pressures of 75.8, 89.6 and 103.4 bar. The maxima are the more pronounced, the closer the critical point is approached.Comparison of experimental results with Nusselt equations shows good agreement except for the immediate vicinity of the pseudocritical temperature.In visual observations a distinct change in flow structure appears in the immediate vicinity of the pseudocritical temperature. A steady state polygon pattern and a boiling-like action could not be observed in this geometry.
Zusammenfassung Beim Wärmetransport durch freie Konvektion in einer dünnen waagerechten Schicht von Kohlendioxid ergaben sich Maxima der scheinbaren Wärmeleitfähigkeit in der Nähe der pseudokritischen Temperaturen bei Drükken von 75,8, 89,6 und 103,4 bar. Die Maxima sind um so ausgeprägter, je mehr man sich dem kritischen Punkt nähert.Ein Vergleich der Versuchsergebnisse mit Nusseltbeziehungen ergibt gute Übereinstimmung außer in unmittelbarer Umgebung der pseudokritischen Temperatur. Direkte Beobachtungen der Konvektionsmuster zeigen in unmittelbarer Umgebung der pseudokritischen Temperatur eine deutliche Strukturänderung. Ein stationäres Zellmuster und siedeähnliche Vorgänge konnten in dieser Anordnung nicht beobachtet werden.

Nomenclature A area of the heating or cooling plate - C constant in the correlation - g acceleration of gravity - h heat transfer coefficient - k thermal conductivity of fluid in the gap - k e equivalent thermal conductivity - m, n exponents of dimensionless numbers - q heat flux - T C,PC absolute temperature; critical C, pseudocritical PC - Gr Grashof numberg ( h c) 3/ 2 - Nu Nusselt numberh/k - Pr Prandtl number/ - thermal diffusivity - coefficient of volume expansion - width of gap - c,h temperature of cooling (c)-, heating (h)-plate - m arithmetic mean temperature ( c+ h)/2 - kinematic viscosity - c,h fluid density at the temperature of the cooling (c)- or heating (h)-plate - heat flow rate through the gap  相似文献   

4.
A function correlating the relative viscosity of a suspension of solid particles in liquids to their concentration is derived here theoretically using only general thermodynamic ideas, with out any consideration of microscopic hydrodynamic models. This function ( r = exp (1/2B * C 2)) has a great advantage over the many different functions proposed in literature, for it depends on a single parameter,B *, and is therefore concise. To test the validity of this function, a least-squares regression analysis was undertaken of available data on the viscosity and concentration of suspensions of coal particles in fuel oil, which promise to be a useful alternative to fuel oil in the near future. The proposed function was found to accurately describe the concentration-dependent behaviour of the relative viscosity of these suspensions. Furthermore, an attempt was made to obtain information about the factors affecting the value ofB *, however the results were only qualitative because of, among other things, the inaccuracy of the viscosity measurements in such highly viscous fluids. shear viscosity of the suspension - 0 shear viscosity of the Newtonian suspending medium - r = /0 relative viscosity - solid volume concentration - c solid weight concentration - m maximum attainable volume concentration of solids - solid volume concentration at which the relative viscosity of the suspension becomes infinite - c m maximum attainable solid weight concentration - s density of the solid phase - l density of the liquid phase - m density of the suspension - k n coefficients of theø-power series expansion of r - { j } sets of parameters specifying the thermodynamic state of the solid phase of a suspension - T absolute temperature (K) - f (c, T, j) formal expression for the relative variation of the viscosity with concentration = [1 / (/c)] T,j - d median size of the granulometric distribution - B plastic or Bingham viscosity - K consistency factor - n flow index - g ([c m c],T, j ) function including an asymptotic divergence asc tends toc m , formally describing the concentration dependent behaviour of the shear viscosity of a suspension - A (T, j) regression analysis parameters - B (T, j) regression analysis parameters - B * (T, j ) regression analysis parameters  相似文献   

5.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

6.
Summary The effect of an internal heat source on the heat transfer characteristics for turbulent liquid metal flow between parallel plates is studied analytically. The analysis is carried out for the conditions of uniform internal heat generation, uniform wall heat flux, and fully established temperature and velocity profiles. Consideration is given both to the uniform or slug flow approximation and the power law approximation for the turbulent velocity profile. Allowance is made for turbulent eddying within the liquid metal through the use of an idealized eddy diffusivity function. It is found that the Nusselt number is unaffected by the heat source strength when the velocity profile is assumed to be uniform over the channel cross section. In the case of a 1/7-power velocity expression, the Nusselt numbers are lower than those in the absence of internal heat generation, and decrease with diminishing eddy conduction. Nusselt numbers, in the absence of an internal heat source, are compared with existing calculations, and indications are that the present results are adequate for preliminary design purposes.Nomenclature A hydrodynamic parameter - a half height of channel - a 1 a constant, 1+0.01 Pr Re 0.9 - a 2 a constant, 0.01 Pr Re 0.9 - C p specific heat at constant pressure - D h hydraulic diameter of channel, 4a - h heat transfer coefficient, q w/(t wt b) - I 1 integral defined by (17) - I 2 integral defined by (18) - k diffusivity parameter, (1+0.01 Pr Re 0.9)1/2 - m exponent in power velocity expression - Nu Nusselt number, hD h/ - Nu 0 Nusselt number in absence of internal heat generation - Pr Prandtl number, / - Q heat generation rate per volume - q w wall heat flux - Re Reynolds number for channel, 2/ - s ratio of heat generation rate to wall heat flux, Qa/q w - T dimensionless temperature, (t wt)/(t wt b) - t fluid temperature, t w wall temperature, t b fluid bulk temperature - u fluid velocity in x direction, , fluid mean velocity - x longitudinal coordinate measured from channel entrance - x + dimensionless longitudinal coordinate, 2(x/a)/Pr Re - y transverse coordinate measured from channel centerline - z transverse coordinate measured from channel wall, ay - molecular diffusivity of heat, /C p - dummy variable of integration - dummy variable of integration - H eddy diffusivity of heat - M eddy diffusivity of momentum - dummy variable of integration - fluid thermal conductivity - T dimensionless diffusivity, Pr ( H/) - fluid kinematic viscosity - dummy variable of integration - fluid density - dummy variable of integration - ratio of eddy diffusivity for heat transfer to that for momentum transfer, H/ M - average value of - dimensionless velocity distribution, u/  相似文献   

7.
Nonstationary vibration of a flexible rotating shaft with nonlinear spring characteristics during acceleration through a critical speed of a summed-and-differential harmonic oscillation was investigated. In numerical simulations, we investigated the influence of the angular acceleration , the initial angular position of the unbalance n and the initial rotating speed on the maximum amplitude. We also performed experiments with various angular accelerations. The following results were obtained: (1) the maximum amplitude depends not only on but also on n and : (2) when the initial angular position n changes. the maximum amplitude varies between two values. The upper and lower bounds of the maximum amplitude do not change monotonously for the angular acceleration: (3) In order to always pass the critical speed with finite amplitude during acceleration. the value of must exceed a certain critical value.Nomenclature O-xyz rectangular coordinate system - , 1, 1 inclination angle of rotor and its projections to thexy- andyz-planes - I r polar moment of inertia of rotor - I diametral moment of inertia of rotor - i r ratio ofI r toI - dynamic unbalance of rotor - directional angle of fromx-axis - c damping coefficient - spring constant of shaft - N nt ,N nt nonlinear terms in restoring forees in 1 and 1 directions - 4 representative angle - a small quantity - V. V u .V N potential energy and its components corresponding to linear and nonlinear terms in the restoring forees - directional angle - n coefficients of asymmetrical nonlinear terms - n coefficients of symmetrical nonlinear terms - coefficients of asymmetrical nonlinear terms experessed in polar coordinates - coefficients of symmetrical nonlinear terms expressed in polar coordinates - rotating speed of shaft - t time - n initial angular position of att=0 - p natural frequency - p 1.p t natural frequencies of forward and backward precessions - , 1, 1 total phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - , 1, 1 phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - P, R t ,R b amplitudes of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - difference between phases ( = fu) - acceleration of rotor - initial rotating speed - t t ,r b amplitudes of nonstationary oscillation during acceleration - (r t )max, (r b )max maximum amplitudes of nonstationary oscillation during acceleration - (r 1 1 )max, (r b 1 )max maximum value of angular acceleration of non-passable case - 0 critical value over which the rotor can always pass the critical speed - p 1,p 2,p 3,p 4 natural frequencies of experimental apparatus  相似文献   

8.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

9.
Certain steady yawed magnetogasdynamic flows, in which the magnetic field is everywhere parallel to the velocity field, are related to certain reduced three-dimensional compressible gas flows having zero magnetic field. Under a restriction, the reduced flows are linked, by certain reciprocal relations, to a four parameter class of plane gas flows. In the instance of constant entropy an approximation method is suggested for obtaining magnetogasdynamic flows from the corresponding plane, irrotational gasdynamic flows and examples are given.

Nomenclature

magnetogasdynamic flow variables H magnetic intensity - q fluid velocity - fluid density - p pressure - s entropy - Q t, H t component of q, H in the x–y plane - w , h component of q, H perpendicular to the x–y plane reduced gasdynamic flow factor of proportionality - q* fluid velocity - * fluid density - p* pressure - Q t * =u*î+v*, w* components of q* - l arbitrary constant - A v Alfvén speed - Q t, , p fluid velocity, density, pressure of the reciprocal gas dynamic flow - L, n, k, arbitrary constants - , velocity potential, stream function - angle made by Q t, Q t * , and V with the x-axis - adiabatic gas constant - a 2=(–1)/2 constant - M Mach number - W constant value of w* - E approximate constant value of g(p) - * modified potential function - modified velocity coordinate - +i - complex potential of the irrotational flow - B arbitrary constant - V incompressible flow velocity - V modified fluid velocity - X p, Y p points on the profile  相似文献   

10.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

11.
The paper reports the outcome of a numerical study of fully developed flow through a plane channel composed of ribleted surfaces adopting a two-equation turbulence model to describe turbulent mixing. Three families of riblets have been examined: idealized blade-type, V-groove and a novel U-form that, according to computations, achieves a superior performance to that of the commercial V-groove configuration. The maximum drag reduction attained for any particular geometry is broadly in accord with experiment though this optimum occurs for considerably larger riblet heights than measurements indicate. Further explorations bring out a substantial sensitivity in the level of drag reduction to the channel Reynolds number below values of 15 000 as well as to the thickness of the blade riblet. The latter is in accord with the trends of very recent, independent experimental studies.Possible shortcomings in the model of turbulence are discussed particularly with reference to the absence of any turbulence-driven secondary motions when an isotropic turbulent viscosity is adopted. For illustration, results are obtained for the case where a stress transport turbulence model is adopted above the riblet crests, an elaboration that leads to the formation of a plausible secondary motion sweeping high momentum fluid towards the wall close to the riblet and thereby raising momentum transport.Nomenclature c f Skin friction coefficient - c f Skin friction coefficient in smooth channel at the same Reynolds number - k Turbulent kinetic energy - K + k/ w - h Riblet height - S Riblet width - H Half height of channel - Re Reynolds number = volume flow/unit width/ - Modified turbulent Reynolds number - R t turbulent Reynolds numberk 2/ - P k Shear production rate ofk, t (U i /x j + U j /x i ) U i /x j - dP/dz Streamwise static pressure gradient - U i Mean velocity vector (tensor notation) - U Friction velocity, w/ where w=–H dP/dz - W Mean velocity - W b Bulk mean velocity through channel - y + yU /v. Unless otherwise stated, origin is at wall on trough plane of symmetry - Kinematic viscosity - t Turbulent kinematic viscosity - Turbulence energy dissipation rate - Modified dissipation rate – 2(k 1/2/x j )2 - Density - k , Effective turbulent Prandtl numbers for diffusion ofk and   相似文献   

12.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

13.
The influence of maneuvering on the chaotic response of a fluttering buckled plate on an aircraft has been studied. The governing equations, derived using Lagrangian mechanics, include geometric non-linearities associated with the occurrence of tensile stresses, as well as coupling between the angular velocity of the maneuver and the elastic degrees of freedom. Numerical simulation for periodic and chaotic responses are conducted in order to analyze the influence of the pull-up maneuver on the dynamic behavior of the panel. Long-time histories phase-plane plots, and power spectra of the responses are presented. As the maneuver (load factor) increases, the system exhibits complicated dynamic behavior including a direct and inverse cascade of subharmonic bifurcations, intermittency, and chaos. Beside these classical routes of transition from a periodic state to chaos, our calculations suggest amplitude modulation as a possible new mode of transition to chaos. Consequently this research contributes to the understanding of the mechanisms through which the transition between periodic and strange attractors occurs in, dissipative mechanical systems. In the case of a prescribed time dependent maneuver, a remarkable transition between the different types of limit cycles is presented.Nomenclature a plate length - a r u r /h - D plate bending stiffness - E modulus of elasticity - g acceleration due to gravity - h plate thickness - j1,j2,j3 base vectors of the body frame of reference - K spring constant - M Mach number - n 1 + 0/g - N 1 applied in-plane force - pp aerodynamic pressure - P pa 4/Dh - q 0/2 - Q r generalized Lagrangian forces - R rotation matrix - R 4 N, a 2/D - t time - kinetic energy - u plate deflection - u displacement of the structure - u r modal amplitude - v0 velocity - x coordinates in the inertial frame of reference - z coordinates in the body frame of reference - Ka/(Ka+Eh) - - elastic energy - 2qa 3/D - a/mh - Poisson's ratio - material coordinates - air density - m plate density - - r prescribed functions - r sin(r z/a) - angular velocity - a/v0 - skew-symmetric matrix form of the angular velocity  相似文献   

14.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

15.
Zusammenfassung Für ein reagierendes Binärgemisch konstanter Dichte werden die Reynolds'schen Gleichungen angegeben. Die Transportkoeffizienten sowie die Wärmekapazitäten der beiden Komponenten werden als konstant angenommen. Für die unbekannten Reynolds'schen Terme werden Transportgleichungen angegeben. Weiter wird der Einfluß der Turbulenz auf die chemische Produktionsdichte diskutiert.
About the transfer of momentum, heat and mass in turbulent flows of binary mixturesPart I: The reynolds equations and the transport equations
The Reynolds equations for a reacting binary mixture of constant density are given. The transport coefficients as well as the specific heats of the components are assumed to be constant. Transport equations for the unknown Reynolds-terms are given. The influence of turbulence on the chemical production of species in discussed.

Formelzeichen c Massenkonzentration - cp soezifische Wärme bei konstantern Druck - D binärer Diffussionskoeffizient - h spezifische Enthalpie - ho=h + v k 2 /2 totale spezifische Enthalpie - ho Reaktionsenthalpie - jk Massendiffusionsstromvektor - k Reaktionsgeschwindigkeitskonstante - p Druck - Pr= cp/ Prandtl-Zahl - q2/2 kinetische Energie der Schwankungsbewegung - qk Energiestromvektor - R universelle Gaskonstante - Sc=/D Schmidt-Zahl - t Zeit - T absolute Temperatur - vk Geschwindigkeitsvektor - xk Ortsvektor Griechische Symbole Dissipationsfunktion - Wärmeleitfähigkeit - dynamische Viskosität - =/ kinematische Viskosität - Dichte - Produktionsdichte - jk viskoser Spannungstensor Indizes auf die Komponente bezogen - 1 auf die Komponente 1 bezogen - 2 auf die Komponente 2 bezogen - mol molekularer Anteil - tur turbulenter Anteil - res resultierender Anteil  相似文献   

16.
For a smooth, bounded domain R, n 3, and a real, positive parameter, we consider the hyperbolic equationu tt +u t u=–f(u)g in with Dirichlet boundary conditions. Under certain conditions onf, this equation has a global attractorA inH 0 1 () ×L 2(). For=0, the parabolic equation also has a global attractor which can be naturally embedded into a compact setA 0 inH 0 1 () ×L 2(). If all of the equilibrium points of the parabolic equation are hyperbolic, it is shown that the setsA are lower semicontinuous at=0. Moreover, we give an estimate of the symmetric distance betweenA 0 andA .  相似文献   

17.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

18.
Streamwise pseudo-vortical motions near the wall in a fully-developed two-dimensional turbulent channel flow are clearly visualized in the plane perpendicular to the flow direction by a sophisticated hydrogen-bubble technique. This technique utilizes partially insulated fine wires, which generate hydrogen-bubble clusters at several distances from the wall. These flow visualizations also supply quantitative data on two instantaneous velocity components, and w, as well as the streamwise vorticity, x . The vorticity field thus obtained shows quasi-periodicity in the spanwise direction and also a double-layer structure near the wall, both of which are qualitatively in good agreement with a pseudo-vortical motion model of the viscous wall-region.List of symbols C i ,c i ,d i constants in Eqs. (2), (3) and (4) - H channel width (m) - Re H Reynolds number (= U c H/) - Re Reynolds number (= U c /) - T period (s) - t time (s) - U mean streamwise velocity (m/s) - U c center-line velocity (m/s) - u friction velocity (m/s) - u, , w velocity fluctuations (m/s) - x, y, z coordinates (m) - * displacement thickness (m) - momentum thickness (m) - mean low-speed streak spacing (m) - kinematic viscosity (m2/s) - phase difference - x streamwise vorticity fluctuation (1/s) - ( )+ normalized by u and - () root mean square value - () statistical average This paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

19.
LDA measurements of the mean velocity in a low Reynolds number turbulent boundary layer allow a direct estimate of the friction velocity U from the value of /y at the wall. The trend of the Reynolds number dependence of / is similar to the direct numerical simulations of Spalart (1988).  相似文献   

20.
The effect of the temperature accommodation coefficient T on the relations at the Knudsen layer edge is investigated for strong evaporation using the moment method. An explicit expression for the dimensionless density as a function of the temperature and the Mach number M is obtained for 0 < T < 1. For T = 0 the entire solution is obtained in explicit form. It is shown that for = 0 and a condensation coefficient << 1 the temperature outside the Knudsen layer changes sharply as M varies from 0 to a certain value much less than unity after which the temperature ceases to depend on . For the model of specular reflection of the molecules from the surface the density and the temperature outside the Knudsen layer are found in explicit form as functions of the Mach number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号