首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the extraction of Bi(III) from synthetic solutions of 2 M H2SO4/0.5 M HCl by supported liquid membranes (SLM) using tri-n-octylphosphine oxide (Cyanex 921) as extractant is reported. First, the nature of the Bi(III)/Cyanex 921 solvates extracted to organic phase (in a solvent extraction system) was determined by the slope method. It was found that Bi(III) reacts with 2 molecules of Cyanex 921 to form the solvate BiCl3·2Cyanex 921. In the recovery of Bi(III) by the SLM system, parameters that influence extraction efficiency were evaluated, including: support, feed solution and stripping solution nature, and extractant concentration in the organic phase which impregnates the support. Results indicate that Cyanex 921 dissolved in kerosene is not able to extract Bi(III) from H2SO4 media. Moreover, transfer of H2SO4 was observed. HCl addition to the feed solution up to a maximum concentration of 0.5 M increases Bi(III) extraction. Further increase in HCl concentration causes a decrease in Bi(III) transfer. Likewise, the concentration of Cyanex 921 in the SLM organic phase which produced the maximum Bi(III) extraction was found to be 0.3 M. The performance of H2O and 0.2 M H2SO4 as stripping solutions was evaluated, and it was found that only H2SO4 enabled Bi(III) transfer.  相似文献   

2.
An easy and rapid hollow-fibre supported liquid membrane method (HFSLM) has been developed to extract and determinate the total concentration of four dinitrophenols in environmental water at ng L(-1) level. This extraction method provides a high selectivity, short extraction time and very low cost for real samples. It is a three-phase system, aqueous-organic-aqueous, where the organic solvent is held into the fibre pores, being in contact with the two other phases. The organic phase is formed by two different organic solvents, with two different polarities, n-undecane and toluene (1:1). The optimization step was performed using a three-variable Doehler design, involving three factors, stirring speed, fibre length and sample volume. The organic phase composition, as well as the pH of the acceptor and donor phases was also optimized. The extraction equilibrium was reached after 30 min, after which essentially the total amount (90-80%) of the four dinitrophenolic compounds were extracted from the sample. Better repeatability and reproducibility at the expense of lower enrichment factors was obtained compared with other methods, employing incomplete extraction during a fixed time. The matrix effect was tested by performing extractions from leachate water and river water. This method is linear in the range 0.1-100 microgL(-1) in different matrices, with detection limit around 100 ng L(-1), after extraction of 6 mL of sample and using high performance liquid chromatography for final analysis.  相似文献   

3.
Abstract

Bound residues of pesticides and their metabolites are defined as being nonextractable with organic solvents, but partly extractable together with the humic matrix by NaOH or other solvents suitable to extract humic compounds. Recently, an improvement in humus extraction from soils was achieved upon derivatization of the organic matter with silylating reagents at room temperature. By this method 70–90% of the organic carbon or nitrogen either from soil or from humin became soluble in organic solvents. The extracts were analyzed by means of 13C NMR-spectroscopy. The spectra were well resolved with signal-separation of less than 1 ppm. The extracted humic compounds were of rather low molecular weight, ranging from 300 to 4000 to 6000 d or more.

14C-labeled residues of pesticides or other xenobiotics found to be nonextractable after exhaustive organic solvent extraction became readily dissolved along with most of the humic matrix using this derivatization procedure. Between 60–80% of 14C anilazine residues or of 14C-labeled chlorinated phenols or anilines originating from both previously solvent extracted soil samples or from humin became solubilized in organic solvents.  相似文献   

4.
A simple liquid–liquid–liquid microextraction device of new design was used to pre-concentrate phenols from water samples before liquid chromatographic (LC) analysis. Extraction was induced by the pH difference inside and outside an organic phase located at the interface. The pH of the donor phase outside the organic phase was adjusted to 1 with HCl whereas the acceptor phase was a basic solution at pH 13. On stirring neutral phenols were extracted into the organic solvent then back-extracted into 1 μL of basic acceptor solution suspended from the tip of a micro syringe. The acceptor phase was then withdrawn into the micro syringe and injected directly into the LC. The technique uses a low-cost disposable extraction ‘device’ and is very convenient to operate. Up to 230-fold enrichment of analytes could be achieved. This procedure could also serve as a sample clean-up step because neutral and basic compounds were not extracted into the acceptor phase. The RSD (n = 5) was better than 6.2% and the linear calibration range was from 1 to 1000 µg–L−1 with r 2 ≥ 0.992.Optimization of experimental conditions (rate of stirring, ionic strength of the sample solution, concentration of reagents, time of extraction, and organic solvent volume) were also examined. The method was applied to the determination of phenols in tap and well waters.Revised: 14 February and 29 March 2005  相似文献   

5.

In this study, the extraction of lipophilic wood extractives from dissolving pulp samples using ionic liquid–liquid extraction and a two phase hollow fibre supported liquid membrane was investigated. Ionic liquids are capable of dissolving a range of organic and polymeric compounds and are biodegradable, with a negligible vapour pressure. Pulp samples were dissolved in a suitable amount of molten 1-butyl-3-methylimidazolium chloride to give 5 % cellulose solution. Pure cellulose was regenerated by adding water and filtered off. The ionic liquid-aqueous filtrate was first extracted for lipophilic extractives using liquid–liquid extraction. Then, a two phase hollow fibre supported liquid membrane extraction of lipophilic extractives was performed to extract the derivatized compounds prior to analysis by gas chromatography mass spectrometry. The operational parameters of this sample preparation approach were optimised using sterols and fatty acid methyl esters. The variation of enrichment factors and extraction efficiency with respect to liquid membrane, extraction time, stirring speed and sample pH were observed and used to get the optimal parameters. The approach was used in the analysis of oxygen bleached dissolving pulp samples in which main compounds identified were fatty acids, sterols, fatty alcohols, steroid hydrocarbons and ketones. These compounds were similar to those obtained using molecular solvent extraction method, which indicated the absence of chemical reaction between extractives and ionic liquid used.

  相似文献   

6.
The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR? in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.  相似文献   

7.
A two‐phase electromembrane extraction (EME) was developed and directly coupled with gas chromatography mass spectrometry (GC‐MS) analysis. The proposed method was successfully applied to the simultaneous determination of imipramine, desipramine, citalopram and sertraline. The model compounds were extracted from neutral aqueous sample solutions into the organic phase filled in the lumen of the hollow fiber. This method was accomplished with 1‐heptanol as organic phase, by means of 60 V applied voltage and with the extraction time of 15 min. Experiments reported recoveries in the range of 69–87% from 1.2 mL neutral sample solution. The compounds were quantified by GC‐MS instrument, with acceptable linearity ranging from 1 to 500 ng mL?1 (R2 in the range of 0.989 to 0.998), and repeatability (RSD) ranging between 7.5 and 11.5% (n = 5). The estimated detection limits (S/N ratio of 3:1) were less than 0.25 ng mL?1. This novel approach based on two‐phase EME brought advantages such as simplicity, low‐costing, low detection limit and fast extraction with a total analysis time less than 25 min. These experimental findings were highly interesting and demonstrated the possibility of solving ionic species in the organic phase at the presence of electrical potential.  相似文献   

8.
Kaykhaii M  Nazari S  Chamsaz M 《Talanta》2005,65(1):223-228
The possibility of applying headspace microextraction into a single drop for the determination of amines in aqueous solutions is demonstrated. A 1 μl drop of benzyl alcohol containing 2-butanone as an internal standard was suspended from the tip of a micro syringe needle over the headspace of stirred sample solutions for extraction. The drop was then injected directly into a GC. The total chromatographic determination was less than 10 min. Optimization of experimental conditions (sampling time, sampling temperature, stirring rate, ionic strength of the solution, concentration of reagents, time of extraction and organic drop volume) with respect to the extraction efficiency were investigated and the linear range and the precision were also examined. Calibration curves yielded good linearity and concentrations down to 2.5 ng ml−1 were detectable with R.S.D. values ranging from 6.0 to 12.0%. Finally, the method was successfully applied to the extraction and determination of amines in tap and river water samples. This system represents an inexpensive, fast, simple and precise sample cleanup and preconcentration method for the determination of volatile organic compounds at trace levels.  相似文献   

9.
In this study, we present a simple and easy-to-use extraction method that is based on a hollow-fiber microporous membrane liquid-liquid extraction (HF-MMLLE), as an extraction technique, followed by gas chromatography-mass spectrometry (GC-MS) to determine a group of brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), at trace levels in aqueous samples. The hollow-fiber membrane (HF) filled with organic solvent was immersed into the aqueous sample, spiked with the analytes at ng l(-1) level, and stirred for 60 min. The proposed method could attain enrichment factors (E(e)) up to 5200 times, after optimising parameters, such as organic solvent, stirring speed and extraction time, that affect the extraction. The HF-MMLLE-GC-MS method was successfully applied to the extraction of PBDEs from tap, river and leachate water samples with spike recoveries ranging from 85% to 110%. The method validation with reagent and leachate water samples provided good linearity, detection limits of 1.1 ng l(-1) or lower, both in reagent and leachate water, as well as satisfactory precision in terms of repeatability and reproducibility with values of % relative standard deviation (%RSD) lower than 8.6 and 16.9, respectively.  相似文献   

10.
The equilibrium data show that indium can be quickly extracted from acidic aqueous solutions by di-(2-ethylhexyl)phosphoric acid in methyl isobutyl ketone. In this polar solvent the species ML3·HL is extracted. The overall extraction constant is higher than that for other tervalent metals. The extraction process can be combined with AAS determination of the indium. The method is fast because stripping is not necessary, and the organic phase can be analysed directly by AAS. Use of a 51 v/v aqueous: organic phase ratio increases the sensitivity. In the pH-range used the method has good selectivity.  相似文献   

11.
The goal of this work was the development of a methodology based on solid phase extraction (SPE) to characterize nitrogen compounds and phthalates from landfill leachate samples. Activated carbon (AC) was used to extract all the organic compounds from the samples. The samples were collected in Porto Alegre-South Brazil. As the AC used had small particle size, it was impossible to use it in the form of packed cartridges; hence, it had to be applied in a batch mode. The desorption of the organic compounds from the AC was made by sonication with dichloromethane. The extract was analyzed by gas chromatography with mass spectrometric detection (GC-MSD). Some aspects of the validation of the methodology were also established. Several nitrogen compounds and phthalates were identified in the samples, proving the efficiency of this method with regard to the selectiveness for these substances.  相似文献   

12.
The use of the extracting syringe (ESy), a fully automated membrane-based extraction technique, for analysis of phthalate esters in complex aqueous samples has been investigated. The ESy, working as an autosampler that combines the extraction process and injection into the gas chromatograph (GC) in one single step, is placed on top of the GC equipped with a flame ionisation detector. The aqueous samples are loaded in a tray and automatically extracted by employing microporous membrane liquid-liquid extraction principle. After the extraction, the extract is directly injected into the GC's programmable temperature vaporisation injector. Six different phthalate esters were used as model compounds. Four extraction solvents were tested and the addition of sample organic modifier was examined.Toluene was the optimal solvent to use for extraction. Due to the large variation in polarity of phthalate esters, 50% methanol as organic modifier had to be added to the samples so as to extract the most nonpolar phthalate esters; di-2-ethylhexylphthalate and di-n-octylphthalate, whereas the other four relatively polar phthalate esters were extracted from unmodified samples. No significant difference between extraction of river water, leachate water from a landfill and reagent water was noted, except for minor deviations. The extraction time was 20 min for extraction of a 1-mL sample, resulting in a good linearity for all aqueous media investigated, good enrichment factors (54-110 folds) and low LOD values (0.2-10 ng mL−1) and relative standard deviation (%R.S.D.; 0.9-3.7%).  相似文献   

13.
Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5 ± 1.7, 110 ± 9.4, 95 ± 26, 120 ± 32, 110 ± 12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.  相似文献   

14.
Liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase technique is described for the extraction of six hydroxyaromatic compounds in river water using a disposable and ready to use hollow fiber. Separation and quantitative analyses were performed using LC with UV detection at 254 nm. Analytes were extracted from the acidified sample solution (donor phase) into the organic solvent impregnated in the pores of the hollow fiber and then back extracted into the alkaline solution (acceptor phase) inside the lumen of the hollow fiber. The fiber was held by a conventional 10 microL LC syringe. The acceptor phase was sandwitched between the plunger and a small volume of the organic solvent (microcap). The acceptor solution was repeatedly moved in and out of the hollow fiber using a syringe pump. This movement provides a fresh acceptor phase to come in contact with the organic phase and thus enhancing extraction kinetics thereby leading to the improvement in enrichment of the analytes. The microcap separates the acceptor phase and the donor phase in addition to being partially responsible for mass transfer of the analytes from the donor solution to the acceptor solution. Under stirring, a fresh donor phase will enter through the open end of the fiber that will also contribute to the mass transfer. Various parameters affecting the extraction efficiency viz type of organic solvent, extraction time, stirring speed, effect of sodium chloride, and concentration of donor and acceptor phases were studied. RSD (3.9-5.6%), correlation coefficient (0.995-0.997), detection limit (2.0-51.2 ng/mL), enrichment factor (339-630), relative recovery (93.2-97.9%), and absolute recovery (33.9-63.0%) have also been investigated. The developed method was applied for the analysis of river water.  相似文献   

15.
A novel, simple method based on magnetically assisted chemical separation (MACS) has been developed for analytical purposes. In this method, neocuproine modified magnetic microparticles was used for selective extraction and preconcentration of copper(II) ions from aqueous solutions. The advantages of this method include consumption of organic solvents almost eliminated and applications on unclear (containing suspended particles) samples without any preliminary filtration step. This method combines simplicity and selectivity of solvent extraction with easy separation of magnetic microparticles from solution with magnet. In addition, it can be considered as a simple method for determination of partition coefficient. The influence of different parameters, such as presence of extractant, amount of extractant loaded on the microparticles, reducing agent, pH, equilibrium time, ionic strength, type and least amount of stripping solution and limit of detection, were evaluated. Also, the effects of various cationic and anionic interferences on the percent recovery of copper were studied. Copper ions were extracted from solution at pH 6 and were stripped from microparticles with 0.5 M HNO3. Extraction efficiencies for solutions with volumes up to 100 ml were >99%. Limit of detection was 1.5 μg/l. The method was applied to the recovery and determination of copper in different water samples.  相似文献   

16.
A study of the extraction of chromium(VI) from aqueous media by ketones was made. Extraction of chromium was found to be most efficient from aqueous hydrochloric acid solutions. A mechanism for the extraction of chromium(VI) from aqueous hydrochloric acid solutions by methyl isobutyl ketone is proposed involving the formation of a receptor in the organic phase, the exchange of the chloride ion of the receptor for the anionic chromium(VI) species of the aqueous phase, and the solvation of the extracted chromium species. The differences in the abilities of various ketones to extract chromium(VI) from aqueous hydrochloric acid solutions, and the differences in the extraction of chromium (VI) from various aqueous acids by methyl isobutyl ketone are attributed to the differences in the formation of receptors.  相似文献   

17.
A novel microextraction technique based on membrane-protected multiwalled carbon nanotubes coated with molecularly imprinted polymer (MWCNTs-MIP) was developed. In this technique, MWCNTs-MIP were packed inside a polypropylene membrane envelope, which was then clamped onto a paper clip. For extraction, the packed membrane envelope was first impregnated with toluene and then placed in sample solutions. Target analytes in the solutions were first extracted into toluene in the membrane envelope, and were then extracted specifically onto the MWCNTs-MIP. After the extraction, target analytes were desorbed in methanol for liquid chromatography analysis. MWCNTs-MIP of prometryn were used as a model to demonstrate the feasibility of this novel microextraction technique. Factors affecting the extraction including organic solvent, stirring rate, extraction time, salt concentration, and pH were investigated. Under the optimized conditions, the limits of detection (a signal-to-noise ratio of 3) for the selected triazine herbicides were 0.08-0.38 μg/L. The prepared membrane envelope could be used at least 50 times. The developed method was used for the analysis of the triazines spiked in river water, wastewater, and liquid milk, with recoveries ranging from 79.3-97.4, 58.9-110.3 and 76.2-104.9%, respectively.  相似文献   

18.
Partitioned dispersive liquid-liquid microextraction (PDLLME) efficiency was demonstrated for the extraction of polar organic compounds (chlorophenoxyacetic acids) prior to high performance liquid chromatography (HPLC). The method was based on the formation of tiny droplets of an organic extractant in an aqueous sample (river water) by injecting a mixture of a water-immiscible organic solvent [tetrachloroethylene (TCE)] as extractant dissolved in a water-miscible organic dispersive solvent [tetrahydrofuran (THF)]. Based on their partition coefficients, polar compounds were extracted into the dispersed TCE droplets as well as into THF. Different parameters affecting the extraction efficiency were evaluated and precision, linearity, detection limit and an enrichment factor were determined.  相似文献   

19.
Corradini  D.  Grego  S.  Liburdi  K.  Marinari  S.  Tonci  M. 《Chromatographia》2006,63(13):S11-S16

This paper reports the results of a study carried out to evaluate the potentiality of combining selective solvent extraction and linear gradient elution reversed-phase high performance liquid chromatography (RP-HPLC) for characterizing soil organic matter on the basis of polarity of its constituting organic compounds. Such approach comprises the sequential extraction of soil organic matter with organic solvents of increasing polarity in a Soxhlet extractor and the subsequent separation of each extract by RP-HPLC. Accordingly, each soil sample has been subjected to cycles of sequential extraction with n-hexane, dichloromethane, ethyl acetate, and methanol. Each sample extracted by one of the four solvents have been dried in a rotary evaporator device at 40°C and then dissolved again in the proper volume of extraction solvent to obtaining sample solutions of concentration ranging from 5.0 to 15 mg ml−1. These sample solutions have been subjected to RP-HPLC separation using a Supelcosil LC-ABZ column that has been eluted by a linear acetonitrile gradient in water, having the same profile for all samples. The study has evidenced the possibility of producing highly repeatable chromatographic profiles, which are correlated to the polarity of organic solvents employed for extracting the organic matter in the Soxhlet extractor.

  相似文献   

20.
A novel bis(indolyl)methane‐modified silica reinforced with multiwalled carbon nanotubes sorbent for solid‐phase extraction was designed and synthesized by chemical immobilization of nitro‐substituted 3,3′‐bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high‐performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single‐step solid‐phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R2) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5–5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro‐substituted 3,3′‐bis(indolyl)methane‐modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro‐substituted 3,3′‐bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface‐to‐volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π–π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as‐established solid‐phase extraction with high‐performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号